聚羧酸系减水剂作为助磨剂使用的构效关系研究
作者:
作者单位:

1.同济大学 先进土木工程材料教育部重点实验室,上海 201804;2.同济大学 材料科学与工程学院,上海 201804;3.慕尼黑工业大学 化学系,德国 加兴 85747;4.上海市政工程设计研究总院(集团)有限公司,上海 200092;5.武汉优城科技有限公司,湖北 武汉 430000

作者简介:

杨海静(1991—),女,宁夏石嘴山人,同济大学博士生.E-mail:yanghaijings@tongji.edu.cn

通讯作者:

孙振平(1969—),男,新疆奇台人,同济大学教授,博士生导师,博士.E-mail:szhp@tongji.edu.cn

中图分类号:

TU528.042

基金项目:

国家自然科学基金资助项目(51678441);上海市科委项目(19DZ1202702,19DZ1201404);上海市建委专项课题(住建管2021-001-002)


Relationship between Structure and Performance of Using Polycarboxylate- Based Superplasticizer as Cement Grinding Aid
Author:
Affiliation:

1.Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai 201804, China;2.School of Materials Science and Engineering, Tongji University, Shanghai 201804, China;3.Department of Chemistry, Technische Universität München, Garching 85747, Germany;4.Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China;5.Wuhan Youcheng Technology Co., Ltd., Wuhan 430000, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    采用甲基烯丙基聚氧乙烯醚(HPEG)为大单体合成一系列具有不同酸醚比、侧链长度及相对分子质量的聚羧酸系减水剂(PCE)作为水泥助磨剂,研究了PCE分子结构对其助磨性能的影响.结果表明:PCE的助磨效果随着酸醚比的增大而增强,当酸醚比超过一定范围后,助磨效果有所减弱;具有短侧链及低相对分子质量的PCE具有更好的助磨效果;PCE磨制水泥的标准稠度用水量降低,16 h抗压强度降低,28 d抗压强度没有损失.

    Abstract:

    Using α-methallyl-ω-hydroxy poly(ethylene glycol)(HPEG) as macromonomer, a series of polycarboxylate-based superplasticizer(PCE) with different acid-to-ether ratios, side chain length and relative molecular mass were prepared and used as cement grinding aids. The influence of PCE molecular structure on its grinding efficiency was investigated. The results indicate that the optimal grinding efficiency is provided by a PCE with a proper acid-to-ether ratio. Short side chain length and low relative molecular mass are preferred. Compared to the reference, the cement produced with PCE exhibits a decreased water demand for standard consistency, and the compressive strength decreases at 16 h without any loss at 28 d.

    表 3 水泥熟料的氧化物组成Table 3 Oxides phase composition of the clinker
    表 1 PCE的GPC表征结果Table 1 Characterization of PCE via GPC method
    表 4 助磨剂对水泥基本性能的影响Table 4 Influence of grinding aids on cement properties
    图1 PCE的分子结构示意图Fig.1 General molecular structure of PCE
    图2 水泥熟料的XRD图谱Fig.2 XRD pattern of the clinker
    图3 熟料-石膏混合物经不同粉磨时间后的勃氏比表面积Fig.3 Blaine specific surface area of the clinker and gypsum blend after different grinding periods
    图4 具有不同侧链长度PCE的助磨效果Fig.4 Grinding efficiency of PCE with different side chain length
    图5 具有不同酸醚比PCE的助磨效果Fig.5 Grinding efficiency of PCE with different molar ratio of methacrylic acid to macromonomer
    图6 具有不同相对分子质量PCE的助磨效果Fig.6 Grinding efficiency of PCE with different relative molecular mass
    表 2 水泥熟料的矿物组成Table 2 Mineral phase composition of the clinker
    表 5 助磨剂对水泥胶砂流动度和抗压强度的影响Table 5 Influence of grinding aids on the fluidity and compressive strength of mortar
    参考文献
    [1] GAO X, YANG Y, DENG H. Utilization of beet molasses as a grinding aid in blended cements[J]. Construction and Building Materials, 2011, 25(9):3782-3789.
    [2] TEOREANU I, GUSLICOV G. Mechanisms and effects of additives from the dihydroxy-compound class on Portland cement grinding[J]. Cement and Concrete Research, 1999, 29(1):9-15.
    [3] GARTNER E, MYERS D. Influence of tertiary alkanolamines on Portland cement hydration[J]. Journal of the American Ceramic Society, 1993, 76(6):1521-1530.
    [4] MAGISTRI M, PRESTI A L. Influence of grinding aid[J]. World Cement, 2007, 38(6):39-41.
    [5] QUY N N, LAM N T. The effect of triethanolamine and limestone powder on strength development and formation of hardened Portland cement structure[C]//JSCE-VIFCE Joint Seminar on Concrete Engineering. Singapore:ASBL Silicates Industriels, 2005:107-112.
    [6] GARCIA F, BOLYA N L, TROMPETTE J L, et al. On fragmentation and agglomeration phenomena in an ultrafine wet grinding process:The role of polyelectrolyte additives[J]. International Journal of Mineral Processing, 2004, 74(Suppl):43-54.
    [7] ZHU X, HOU H, HUANG X, et al. Enhance hydration properties of steel slag using grinding aids by mechanochemical effect[J]. Construction and Building Materials, 2012, 29:476-481.
    [8] MISHRA R K, GEISSBUHLER D, CARMONA H A, et al. EN route to multi-model scheme for clinker comminution with chemical grinding aids[J]. Advances in Applied Ceramics, 2015, 114(7):393-401.
    [9] KATSIOTI M, TSAKIRIDIS P E, GIANNATOS P, et al. Characterization of various cement grinding aids and their impact on grindability and cement performance[J]. Construction and Building Materials, 2009, 23(5):1954-1959.
    [10] HIRATA T. Cement dispersant:JP 842,022 (S59-018338)[P]. 1981-07-11.
    [11] YOSHIOKA K, SAKAI E, DAIMON M. Role of steric hindrance in the performance of superplasticizers for concrete[J]. Journal of the American Ceramic Society, 1997, 80(10):2667-2671.
    [12] PLANK J, LEI L. Future perspectives of PCE technology[C]//The 2nd International Conference on Polycarboxylate Superplasticizers (PCE 2017). Garching:TUM Publishing House, 2017:19-62.
    [13] PLANK J, SAKAI E, MIAO C W, et al. Chemical admixtures-chemistry, applications and their impact on concrete microstructure and durability[J]. Cement and Concrete Research, 2015, 78:81-99.
    [14] HELLER T, MULLER T, HONERT D. Cement additives based on PCE[J]. ZKG International, 2011(2):40-48.
    [15] MISHRA R K, HEINZ H, ZIMMERMANN J, et al. Understanding the effectiveness of polycarboxylates as grinding aids[C]//International conference on superplasticizers and other chemical admixtures. Prague:ACI Special Publication, 2012:235-249.
    [16] ZHANG T, GAO J, HU J. Preparation of polymer-based cement grinding aid and their performance on grindability[J]. Construction and Building Materials, 2015, 75:163-168.
    [17] SUN Z, YANG H, SHUI L, et al. Preparation of polycarboxylate-based grinding aid and its influence on cement properties under laboratory condition[J]. Construction and Building Materials, 2016, 127:363-368.
    [18] MISHRA R K, WEIBEL M, MULLER T, et al. Energy-effective grinding of inorganic solids using organic additives[J]. Chimia, 2017, 71:451-460.
    [19] YANG H, SUN Z, PLANK J. Investigation on the optimal chemical structure of methacrylate ester based polycarboxylate superplasticizers to be used as cement grinding aid under laboratory conditions:Effect of anionicity, side chain length and dosage on grinding efficiency, mortar workability and strength development[J]. Construction and Building Materials, 2019, 224:1018-1025.
    [20] 孙振平, 蒋正武, 王建东, 等. 聚羧酸系减水剂与其他减水剂复配性能的研究[J]. 建筑材料学报, 2008, 11(5):585-590.
    [21] REHBINDER P A. About influence of changing surface on cleavage hardness and other crystal properties[C]//Proceeding of the 6th Physic Congress. Moscow:State Publishing House, 1928:29.
    [22] GRIFFITH A A. The phenomena of rupture and flow in solids[J]. Fisheries Management and Ecology, 1920, 16(2):130-138.
    [23] 张太龙. 高分子水泥混凝土添加剂的合成、机理及应用研究[D]. 南京:东南大学, 2016.
    [24] 朱宪伯, 吕忠亚, 张正峯. 水泥助磨剂的作用机理-薄膜假说[C]//水泥助磨剂研究与应用论文集. 西安:中国建材工业出版社, 2005:60-62.
    相似文献
    引证文献
引用本文

杨海静,孙振平,PLANK Johann,水亮亮,董耀武.聚羧酸系减水剂作为助磨剂使用的构效关系研究[J].建筑材料学报,2022,25(1):54-60

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-11-26
  • 最后修改日期:2020-12-30
  • 在线发布日期: 2022-01-19
文章二维码