海洋环境中玄武岩/聚丙烯纤维增强混凝土氯离子扩散性能
作者:
作者单位:

1.西安建筑科技大学 土木工程学院,陕西 西安 710055;2.西安建筑科技大学 省部共建西部绿色建筑国家重点实验室,陕西 西安 710055

作者简介:

苏 丽(1990—),女,甘肃甘谷人,西安建筑科技大学博士生. E-mail: suli9290@outlook.com

通讯作者:

牛荻涛(1963—),男,陕西华县人,西安建筑科技大学教授,博士生导师,博士. E-mail: niuditao@163.com

中图分类号:

TU528.01

基金项目:

国家自然科学基金重大项目支课题(51590914);陕西省自然科学基础研究计划项目(2019JQ-481)


Chloride Diffusion Performance of Basalt/Polypropylene Fiber Reinforced Concrete in Marine Environment
Author:
Affiliation:

1.School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China;2.State Key Laboratory of Green Building in Western China, Xi'an University of Architecture and Technology, Xi'an 710055, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用自然浸泡法模拟海洋水下区环境,研究了玄武岩/聚丙烯纤维增强混凝土(BPFRC)的氯离子扩散性能.通过固液萃取法和电位法测试了不同侵蚀时间下BPFRC中的氯离子含量,分析了纤维种类、掺量和混杂形式对氯离子含量分布、表面氯离子含量(Cs)和氯离子扩散系数的影响;此外,采用Rapid Air 457测定了BPFRC的孔径分布,并计算了其孔结构分形维数.结果表明:BPFRC中的氯离子含量随着侵蚀龄期的增加而增大;当纤维体积分数为0.10%时,玄武岩纤维对混凝土中氯离子含量的降低作用大于聚丙烯纤维,适量的混杂纤维能够减小混凝土中的氯离子含量,过量的混杂纤维则增大了混凝土中不同深度处的氯离子含量;BPFRC中的Cs在侵蚀初期增长较快、后期增长较慢,与侵蚀时间为幂函数关系;BPFRC的孔结构表现出明显的分形特征,分形维数范围为2.301~2.446,分形维数与氯离子扩散系数具有较强的正相关性.

    Abstract:

    The chloride diffusion performance of basalt/polypropylene fiber reinforced concrete (BPFRC) was studied by using natural immersion method to simulate the marine underwater area. The chloride content in BPFRC under different exposure time was measured by solid-liquid extraction and potentiometric method, and the effects of fiber type, its content and hybrid form on chloride content profile, surface chloride content (Cs) and chloride diffusion coefficient were investigated. In addition, the pore size distribution of BPFRC was measured using Rapid Air 457, and the fractal dimension of pore structure was calculated. The results show that the chloride content in BPFRC increases with increasing exposure time. When the fiber volume fraction is 0.10%, the effect of basalt fiber on reducing chloride content in concrete is greater than that of polypropylene fiber, and an appropriate amount of hybrid fiber can reduce the chloride content in concrete. The excessive hybrid fiber increases the chloride content at different depths in concrete. The Cs of BPFRC increases gradually with increasing exposure time, and the relationship between Cs and exposure time is a power function. The pore structure of BPFRC shows obvious fractal characteristics, and the fractal dimension ranges from 2.301 to 2.446. The fractal dimension has a strong positive correlation with chloride diffusion coefficient.

    表 1 胶凝材料的化学组成Table 1 Chemical compositions of binder
    表 2 玄武岩纤维和聚丙烯纤维物理力学性能Table 2 Physical and mechanical properties of BF and PF
    表 3 混凝土配合比Table 3 Mix proportions of concrete
    表 4 各组试件的表面氯离子含量拟合函数Table 4 Fitting results of surface chloride contents of specimens
    图1 玄武岩纤维和聚丙烯纤维外观形貌Fig.1 Morphology of BF and PF
    图2 各组试件的抗压强度Fig.2 Compressive strength of specimens
    图3 各组试件在不同侵蚀龄期下的氯离子含量分布Fig.3 Chloride content profiles of specimens at different exposure times
    图4 不同侵蚀龄期下各组试件的表面氯离子含量Fig.4 Surface chloride content of specimens atdifferent exposure times
    图5 试件BC-40-0.1表面氯离子含量随侵蚀龄期变化的拟合曲线Fig.5 Fitting curves of surface chloride content varied by exposure time of specimen BC-40-0.1
    图6 不同侵蚀龄期下各组试件的氯离子扩散系数Fig.6 Chloride diffusion coefficient of specimensat different exposure times
    图7 各组试件的28 d抗压强度与侵蚀30 d的氯离子扩散系数之间的关系Fig.7 Relationship between compressive strength at 28 d and chloride diffusion coefficient with 30 d exposure time of specimens
    图8 各组试件等效孔数量和孔径的双对数散点图Fig.8 Double logarithmic scatter plot of conversions number with pore and diameter of specimens
    图9 各组试件的分形维数与氯离子扩散系数之间的关系Fig.9 Relationship between fractal dimension and chloride diffusion coefficient of specimens
    参考文献
    [1] 金伟良,赵羽习. 混凝土结构耐久性[M].北京:科学出版社, 2014:13-17.
    [2] RASHIDDADASH P, RAMEZANIANPOUR A A, MAHDIKHANI M. Experimental investigation on flexural toughness of hybrid fiber reinforced concrete (HFRC) containing metakaolin and pumice [J]. Construction and Building Materials, 2014, 51:313-320.
    [3] KAYALI O, HAQUE M N, ZHO B. Some characteristics of high strength fiber reinforced lightweight aggregate concrete [J]. Cement and Concrete Composites, 2003, 25(2):207-213.
    [4] 李艺, 赵文. 混杂纤维混凝土阻裂增韧及耐久性能[M]. 北京:科学出版社, 2012:1-6.
    [5] KUDER K G, SHAH S. Processing of high-performance fiber-reinforced cement based composites [J]. Construction and Building Materials, 2010, 24(2):181-186.
    [6] LAU A, ANSON M. Effect of high temperature on high performance steel fiber reinforced concrete [J]. Cement and Concrete Research, 2006, 36(9):1698-1707.
    [7] AFROUGHSABET V, BIOLZI L, OZBAKKALOGLU T. High-performance fiber-reinforced concrete:A review [J]. Journal of Materials Science, 2016, 51:6517-6551.
    [8] HSIE M, TU C, SONG P S. Mechanical properties of polypropylene hybrid fiber-reinforced concrete [J]. Materials Science and Engineering A, 2008, 494:153-157.
    [9] 杨成蛟,黄承逵,车轶, 等. 混杂纤维混凝土的力学性能及抗渗性能[J]. 建筑材料学报, 2008, 11(1):89-93.
    [10] 李春蕊, 王学志, 刘华新, 等. 混杂纤维混凝土的研究进展[J]. 材料科学与工程学报, 2018, 36(3):164-170.
    [11] FIORE V, SCALICI T, DI BELLA G, et al. A review on basalt fibre and its composites [J]. Composites Part B, 2015, 74:74-94.
    [12] QIAN C X, STROEVEN P. Development of hybrid polypropylene-steel fibre-reinforced concrete [J]. Cement and Concrete Research, 2000, 30(1):63-69.
    [13] NILI M, AFROUGHSABET V. The long-term compressive strength and durability properties of silica fume fiber-reinforced concrete [J]. Materials Science and Engineering A, 2012, 531:107-111.
    [14] ZHANG P, LI Q F. Effect of polypropylene fiber on durability of concrete composite containing fly ash and silica fume [J]. Composites Part B Engineering, 2013, 45(1):1587-1594.
    [15] GUO Y H, HU X Y, LU¨ J F. Experimental study on the resistance of basalt fibre-reinforced concrete to chloride penetration [J]. Construction and Building Materials, 2019, 223:142-155.
    [16] 张剑. 玄武岩-聚丙烯混杂纤维高耐久性混凝土的制备与物理力学性能研究[D]. 西安:西安建筑科技大学, 2017.
    [17] RANJBAR N, TALEBIAN S, MEHRALI M, et al. Mechanisms of interfacial bond in steel and polypropylene fiber reinforced geopolymer composites [J]. Composites Science and Technology, 2016, 122:73-81.
    [18] MYDIN M A O, SOLEIMANZADEH S. Effect of polypropylene fiber content on flexural strength of lightweight foamed concrete at ambient and elevated temperatures [J]. Advance Applied Science Research, 2012(3):2837-2846.
    [19] NIU D T, HUANG D G, ZHENG H, et al. Experimental study on mechanical properties and fractal dimension of pore structure of basalt-polypropylene fiber-reinforced concrete [J]. Applied Sciences, 2019, 9(8):1602-1616.
    [20] 赵羽习, 王传坤, 金伟良, 等. 混凝土表面氯离子含量时变规律试验研究[J]. 土木建筑与环境工程, 2010,30(3):8-13.
    [21] BAGHERZADEH R, SADEGHI A H, LATIFI M. Utilizing polypropylene fibers to improve physical and mechanical properties of concrete [J]. Textile Research Journal, 2012, 82(1):88-96.
    [22] BROWN M C, OZYILDIRIM H C, DUKE W L. Investigation of steel and polymer fiber-reinforced self-consolidating concrete [J]. ACI Materials Journal, 2010, 274:69-78.
    [23] 赵兵兵, 贺晶晶, 王学志,等. 玄武岩-聚丙烯混杂纤维混凝土抗水渗透试验[J]. 兰州理工大学学报, 2016, 42(1):139-143.
    [24] KASSIR M K, GHOSN M. Chloride-induced corrosion of reinforced concrete bridge decks [J]. Cement and Concrete Research, 2002, 32(1):139-143.
    [25] PETCHERDCHOO A, Time dependent models of apparent diffusion coefficient and surface chloride for chloride transport in fly ash concrete [J]. Construction and Building Materials, 2013, 38:497-507.
    [26] PACK S W, JUNG M S, SONG H W, et al. Prediction of time dependent chloride transport in concrete structures exposed to a marine environment [J]. Cement and Concrete Research, 2010, 40(2):302-312.
    [27] 张金喜, 金珊珊. 水泥混凝土微观孔隙构造及其作用[M]. 北京:科学出版社, 2014:34-44.
    [28] ZHANG B Q, LIU W, LIU X G. Scale-dependent nature of the surface fractal dimension for bi- and multi-disperse porous solids by mercury porosimetry [J]. Applied Surface Science, 2006, 253(3):1349-1355.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

苏丽,牛荻涛,黄大观,傅强.海洋环境中玄武岩/聚丙烯纤维增强混凝土氯离子扩散性能[J].建筑材料学报,2022,25(1):44-53

复制
分享
文章指标
  • 点击次数:226
  • 下载次数: 478
  • HTML阅读次数: 23
  • 引用次数: 0
历史
  • 收稿日期:2020-09-09
  • 最后修改日期:2020-09-22
  • 在线发布日期: 2022-01-19
文章二维码