环氧树脂修复水泥基材料微裂缝的渗透机理
作者:
作者单位:

南昌大学 建筑工程学院,江西 南昌 330031

作者简介:

王信刚(1977—),男,江西万载人,南昌大学教授,博士生导师,博士.E-mail:wxglab@126.com

通讯作者:

赵 华(1982—),女,山东梁山人,南昌大学副教授,硕士生导师,博士.E-mail:zhaohua@ncu.edu.cn

中图分类号:

TU528.01

基金项目:

国家自然科学基金资助项目(51972158,52062032);江西省主要学科学术和技术带头人培养计划(20204BCJ22001);江西省自然科学基金重点项目(20212ACB204017)


Capillary Transport Mechanism of Epoxy Resin Repairing Micro-cracks in Cement-Based Materials
Author:
Affiliation:

School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了探明微胶囊芯材(环氧树脂)修复水泥基材料微裂缝的毛细渗透机理,采用光学接触角测量仪测量环氧树脂的接触角及表面张力,并用环境扫描电镜观察环氧树脂在水泥基材料裂缝表面的润湿效果,研究温度、裂缝宽度、环氧树脂种类等因素对环氧树脂渗透能力的影响,建立了毛细渗透理论模型,进行模拟渗透试验.结果表明:在20~50 ℃范围内,升高温度能降低环氧树脂黏度,增强环氧树脂在水泥基材料微裂缝中的毛细渗透能力;环氧树脂在窄裂缝(一般小于200 µm)中渗透时,初期可忽略其自身重力影响,渗透驱动力主要来源于毛细作用;在裂缝宽度为50~200 μm时,环氧树脂的毛细渗透能力与裂缝宽度成反比,宽度越小毛细作用越明显,毛细渗透能力越强;环氧树脂E-51的毛细渗透能力相比环氧树脂E-44增强约17.4%,荧光环氧树脂相比普通环氧树脂的毛细渗透能力降低5%~8%.

    Abstract:

    To investigate the capillary transport mechanism of microcapsule core material (epoxy resin) to repair micro-cracks in cement-based materials, the contact angle and surface tension of epoxy resin were measured by optical contact angle measuring instrument. Environment scanning electron microscopy (ESEM) was used to observe the wetting effect of epoxy resin on the crack surface of cement-based materials. To study the influence of temperature, crack width, epoxy resin and other factors on capillary transport capacity, a theoretical model of capillary flow was established and conducted a simulated capillary flow test. The results show as follows: in the range of 20-50 ℃, increasing temperature can reduce epoxy resin viscosity and enhance the capillary transport capacity of micro-cracks in cement-based materials. When epoxy resin permeates through narrow cracks (generally less than 200 μm), its gravity can be ignored in the initial stage, and the driving force is generated by capillary force. In the range of 50-200 μm, epoxy resin capillary transport capacity is inversely proportional to crack width, the smaller the width, the more obvious the capillary force and the stronger the capillary transport capacity. The capillary transport capacity of epoxy resin E-51 is 17.4%, stronger than epoxy resin E-44, the capillary transport capacity of fluorescent epoxy resin is 5%-8% lower than epoxy resin.

    表 3 不同裂缝宽度下环氧树脂 FS/E-51的渗透高度Table 3 FS/E-51 epoxy resin capillary transport height at different crack widths
    图1 荧光素钠在环氧树脂中的分散图Fig.1 Dispersion diagram of fluorescein sodium in epoxy resin
    图2 20 ℃时不同种类环氧树脂与水泥基材料接触角随时间变化图Fig.2 Contact angle diagram of different epoxy resinsand cement-based materials changing with timeat 20 ℃
    图3 20 ℃时环氧树脂E-51与水泥基材料接触角随时间变化光学图Fig.3 Optical diagram of contact angle between epoxy resin E-51 and cement-based materials at 20 ℃
    图4 不同种类环氧树脂与水泥基材料接触角随温度变化图Fig.4 Contact angle diagram of different epoxy resins and cement-based materials changing with temperatures
    图5 不同种类环氧树脂的表面张力随温度变化图Fig.5 Change diagram of surface tension of different epoxy resins with temperatures
    图6 不同种类环氧树脂黏度随温度变化图Fig.6 Viscosity change chart of different epoxy resins with different temperatures
    图7 水泥基材料裂缝表面形貌图Fig.7 ESEM image of the crack surface of cement-based materials
    图8 环氧树脂在水泥基材料裂缝表面润湿图Fig.8 Wetting diagram of epoxy resin on crack surface of cement-based materials
    图9 水泥基材料裂缝表面粗糙度模型Fig.9 Surface roughness model of cracks oncement-based materials
    表 4 环氧树脂渗透高度Table 4 Capillary transport height of epoxy resin
    参考文献
    [1] WANG X F, HUANG Y J, HUANGY X, et al. Laboratory and field study on the performance of microcapsule-based self-healing concrete in tunnel engineering[J]. Construction and Building Materials, 2019, 220:90-101.
    [2] DONG B Q, FANG G H, DING W J, et al. Self-healing features in cementitious material with urea-formaldehyde/epoxy microcapsules[J]. Construction and Building Materials, 2016, 106:608-617.
    [3] LUCIJA H, LADISLAV K, IVAN A, et al. Capillary absorption in concrete and the Lucas-Washburn equation[J]. Cement and Concrete Composites, 2010, 32(1):84-91.
    [4] SNOECK D, VANDEN P H, VAN T M, et al. Water penetration through cracks in self-healing cementitious materials with superabsorbent polymers studied by neutron radiography[J].Cement and Concrete Research, 2018, 113:86-98.
    [5] HONG S X, YAO W Q, GUO B W, et al. Water distribution characteristics in cement paste with capillary absorption[J]. Construction and Building Materials, 2020, 240:117767.
    [6] DONG B Q, FANG G H, WANG Y H, et al. Performance recovery concerning the permeability of concrete by means of a microcapsule based self-healing system[J]. Cement and Concrete Composites, 2017, 78:84-96.
    [7] REINHARDT H W, JOOSS M. Permeability and self-healing of cracked concrete as a function of temperature and crack width[J]. Cement and Concrete Research, 2003, 33(7):981-985.
    [8] 曹芳维,李敏,王绍凯,等. 碳纤维与环氧树脂润湿和黏附作用[J].复合材料学报,2011,28(4):23-28.
    [9] YU J, ZHENG Q, HOU D S, et al. Insights on the capillary transport mechanism in the sustainable cement hydrate impregnated with graphene oxide and epoxy composite[J]. Composites Part B:Engineering, 2019, 173:106907.
    [10] HAN T L, WANG X F, LI D W, et al. Stress-strain behaviour and pore structure of microcapsule-based self-healing cementitious composite under triaxial tests[J]. Construction and Building Materials,2020,241:118009.
    [11] WANG X G, CHEN Z F, XU W, et al. Fluorescence labelling and self-healing microcapsules for detection and repair of surface microcracks in cement matrix[J]. Composites Part B:Engineering, 2020, 184:107744.
    [12] WANG H, LIANG J J, PENG Y Y, et al. Coupled wetting meniscus model for the mechanism of spontaneous capillary action[J]. Applied Mathematical Modelling, 2017, 50:200-218.
    [13] SUCHATA K, MUENDUEN P, BI-MIN Z N. Applicability of Washburn capillary rise for determining contact angles of powders/porous materials[J]. Journal of Colloid and Interface Science, 2013, 397:169-176.
    [14] DIANE G, ANTHONY J, ANDREA H, et al. Simulation of the capillary flow of an autonomic healing agent in discrete cracks in cementitious materials[J]. Cement and Concrete Research, 2014, 58:35-44.
    [15] ALAIN S, MICHEL N, JACQUES S, et al. Effect of dynamic contact angle on capillary rise phenomena[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2000, 161(1):81-87.
    [16] BAO J W, WANG L C. Capillary imbibition of water in discrete planar cracks[J]. Construction and Building Materials, 2017, 146:381-392.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王信刚,周镇,赵华,张晨阳,李玉洁.环氧树脂修复水泥基材料微裂缝的渗透机理[J].建筑材料学报,2021,24(6):1200-1207

复制
分享
文章指标
  • 点击次数:198
  • 下载次数: 909
  • HTML阅读次数: 18
  • 引用次数: 0
历史
  • 收稿日期:2020-07-28
  • 最后修改日期:2020-09-28
  • 录用日期:2020-09-30
  • 在线发布日期: 2021-12-28
文章二维码