硫氧化细菌的生长特性及其对砂浆性能的影响
作者:
作者单位:

1.天津城建大学 材料科学与工程学院,天津 300384;2.天津城建大学 天津市建筑绿色功能材料重点实验室,天津 300384;3.河北工业大学 土木与交通工程学院,天津 300401;4.天津城建大学 土木工程学院,天津 300384;5.天津大学 水利工程仿真与安全国家重点实验室,天津 300072

作者简介:

荣 辉(1983—),男,河北衡水人,天津城建大学副教授,硕士生导师,博士. E-mail: hrong@tcu.edu.cn

通讯作者:

马国伟(1968—),男,陕西绥德人,河北工业大学教授,博士生导师,博士. E-mail: guowei.ma@hebut.edu.cn

中图分类号:

TU528.1

基金项目:

国家自然科学基金资助项目(51978439,52078321);天津市交通运输科技发展计划项目资助(2018-38);中国博士后科学基金资助项目(2019M651000);天津市轨道交通重大专项项目(18ZXGDGX00050);天津市重点研发计划科技支撑计划重点项目(20YFZCSN00520)


Growth Characteristics of Sulfur Oxidizing Bacteria and Its Influence on Mortar Properties
Author:
Affiliation:

1.School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin 300384, China;2.Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin 300384, China;3.School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China;4.School of Civil Enigneering, Tianjin Chengjian University, Tianjin 300384, China;5.State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China

Fund Project:

Basic Research on microbial Corrosion behavior, Action Mechanism and Prevention technology of Concrete in Marine Environment (51978439)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    研究了硫氧化细菌的生长特性以及腐蚀后砂浆试样的力学性能和微观结构.结果表明:硫氧化细菌适宜生长在30 ℃,pH值6~7,且硫代硫酸钠质量浓度为10 g/L的环境中,其代谢产物为SO42-;砂浆表面的粗糙度与SO42-腐蚀程度有关,试验组完全浸没区的粗糙度变化值高于气-液交界面处的粗糙度,形成的生物被膜对砂浆起到了一定的保护作用,对照组气-液交界面处的粗糙度变化值明显低于试验组,说明硫氧化细菌促进了SO42-的渗透;120 d时试验组和对照组试样中均检测到了大量板状石膏的存在,且试验组试样中石膏的生成量高于对照组,在75 d后试验组由于大量石膏的膨胀力作用使得砂浆性能最终劣化,硫氧化细菌在一定程度上对砂浆起到了加快腐蚀的作用.

    Abstract:

    The growth characteristics of sulfur oxidizing bacteria and the mechanical properties and microstructure of mortar specimens after corrosion were studied. The results show that: the sulfur oxidation bacteria are suitable for growth at 30 ℃, pH value of 6-7, and 10 g/L the dosage of sodium thiosulfate, and its metabolite is SO42-. The roughness of the mortar surface is related to the degree of SO42- corrosion, and the roughness change value of the completely immersion area in the test group is higher than that at the gas-liquid interface, and the formed biofilm plays a certain protective effect on the mortar. The roughness change value at the gas-liquid interface of the control group is significantly lower than that of the test group, and the sulfur oxidizing bacteria promote the penetration of SO42-. A large amount of slab gypsum is detected in both the test and control group specimens at 120 d. The content of gypsum generated in the specimens of the test group is higher than that of the control group. And the mortar performances of the test group eventually deteriorate after 75 d due to the swelling force of a large amount of gypsum, and the sulfur oxidizing bacteria play a role in accelerating the corrosion of the mortar to a certain extent.

    表 4 砂浆试样的表面粗糙度Table 4 Surface roughness of mortar samples
    表 1 砂浆配合比Table 1 Mix proportion of mortar kg/m3
    表 3 砂浆试样的外观变化Table 3 Appearance change of mortar samples
    图1 砂浆试样浸泡示意图Fig.1 Schematic diagram for immersion of mortar samples
    图2 不同温度下硫氧化细菌溶液的OD590值Fig.2 OD590 of sulfur oxidizing bacteria solution at different temperatures
    图3 不同温度下硫氧化细菌溶液的pH值Fig.3 pH value of sulfur oxidizing bacteria solution at different temperatures
    图5 不同初始pH值下硫氧化细菌溶液的OD590值Fig.5 OD590 of sulfur oxidizing bacteria solution under different initial pH values
    图6 不同初始pH值下溶液的pH值Fig.6 pH value of solution under different initial pH values
    图8 不同反应底物掺量下硫氧化细菌溶液的OD590值Fig.8 OD590 of sulfur oxidizing bacteria solution with different substrate contents
    图9 不同反应底物掺量下溶液的pH值Fig.9 pH value of solution with different substrate contents
    图10 砂浆试样的质量变化率Fig.10 Mass change rate of mortar samples
    图11 砂浆试样的抗压强度Fig.11 Compressive strength of mortar samples
    图12 砂浆试样的抗压强度变化率Fig.12 Change rate of compressive strength of mortar samples
    图13 120 d时砂浆试样气-液交界面处矿化产物的XRD图谱Fig.13 XRD spectra of mineralized products at gas-liquid interface of mortar samples at 120 d
    图14 120 d时砂浆试样气-液交界面处TG-DTG曲线Fig.14 TG-DTG curves at gas-liquid interface of mortar samples at 120 d
    图15 120 d时SB组砂浆试样气-液交界面处硫氧化细菌的SEM图Fig.15 SEM micrographs of SOB on gas-liquid interfaceof SB group mortar samples at 120 d
    图16 120 d时砂浆试样气-液交界面处SEMFig.16 SEM micrographs of gas-liquid interface of mortar samples at 120 d
    图17 板状晶体的EDS分析Fig.17 EDS analysis of plate like crystalline
    表 2 硫氧化细菌的培养基成分Table 2 Culture medium composition of SOB g/L
    参考文献
    [1] JIANG G M, ZHOU M, CHIU T H, et al. Wastewater-enhanced microbial corrosion of concrete sewers[J]. Environmental Science and Technology, 2016, 50(15): 8084-8092.
    [2] VOLLERTSEN J, NIELSEN A H, JENSEN H S, et al. Corrosion of concrete sewers - The kinetics of hydrogen sulfide oxidation[J]. Science of the Total Environment, 2008, 394(1): 162-170.
    [3] 韩静云, 张小伟, 田永静, 等. 污水处理系统中混凝土结构的腐蚀现状调查及分析[J]. 混凝土, 2000(9): 52-54,63.
    [4] TULLIANI J M, MONTANARO L, NEGRO A, et al. Sulfate attack of concrete building foundations induced by sewage waters[J]. Cement and Concrete Research, 2002, 32(6): 843-849.
    [5] PARKER C D. The corrosion of concrete 1. The isolation of a species of bacterium associated with the corrosion of concrete exposed to atmospheres containing hydrogen sulphide[J]. Australian Journal of Experimental Biology and Medical Science, 1945, 23(2): 91-98.
    [6] HIRSCH P, ECKHARDT F E W, PALMER R J. Methods for the study of rock-inhabiting microorganisms - A mini review[J]. Journal of Microbiological Methods, 1995, 23(2): 143-167.
    [7] HUGHES P, FAIRHURST D, SHERRINGTON I, et al. Microscopic study into biodeterioration of marine concrete[J]. International Biodeterioration and Biodegradation, 2013, 79: 14-19.
    [8] 张小伟, 张雄. 混凝土微生物腐蚀的作用机制和研究方法[J]. 建筑材料学报, 2006,9(1): 52-58.
    [9] O’CONNELL M, MCNALLY C, RICHARDSON M G. Biochemical attack on concrete in wastewater applications: A state of the art review[J]. Cement and Concrete Composites, 2010, 32(7): 479-485.
    [10] ROBERTS D J, NICA D, ZUO G, et al. Quantifying microbially induced deterioration of concrete: Initial studies[J]. International Biodeterioration and Biodegradation, 2002, 49(4): 227-234.
    [11] GAYLARDE C, RIBAS SILVA M, WARSCHEID T. Microbial impact on building materials: An overview[J]. Materials and Structures, 2003, 36(259): 342-352.
    [12] WARSCHEID T, BRAAMS J. Biodeterioration of stone: A review[J]. International Biodeterioration and Biodegradation, 2000, 46(4): 343-368.
    [13] PARKER C D. Mechanics of corrosion of concrete sewers by hydrogen sulfide[J]. Sewage and Industrial Wastes, 1951, 23(12): 1477-1485.
    [14] LEEMANN A, LOTHENBACH B, HOFFMANN C. Biologically induced concrete deterioration in a wastewater treatment plant assessed by combining microstructural analysis with thermodynamic modeling[J]. Cement and Concrete Research, 2010, 40(8): 1157-1164.
    [15] OKABE S, ODAGIRI M, ITO T, et al. Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems[J]. Applied and Environmental Microbiology, 2007, 73(3): 971-980.
    [16] 荣辉, 高瑞晓, 张磊, 等. 一种混凝土的表面粗糙度测量方法: CN109029304A[P]. 2018-12-18.
    [17] 何吉焕. 硫代硫酸钠标准溶液有效期的探讨[J]. 广州化工, 2017, 45(16): 114-116.
    [18] 荣辉, 高瑞晓, 高礼雄, 等. 污水半浸环境下混凝土的微生物腐蚀研究[J]. 混凝土, 2019(12): 18-22,28.
    [19] 姜磊. 硫酸盐腐蚀环境下混凝土劣化规律研究[D]. 西安: 西安建筑科技大学, 2014.
    [20] ALCAÁNTARA S,VELASCO A,REVAH S. Sulfur formation by steady-state continuous cultures of a sulfoxidizing consortium and Thiobacillus thioparus ATCC 23645[J].Environment Technology, 2004, 25(10): 1151-1157.
    [21] SOLEIMANI S, ORMECI B, ISGOR O B. Growth and characterization of Escherichia coliDH5α biofilm on concrete surfaces as a protective layer against microbiologically influenced concrete deterioration(MICD)[J]. Applied Microbiology and Biotechnology, 2013, 97(3): 1093-1102.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

荣辉,於成龙,马国伟,王海良,张津瑞.硫氧化细菌的生长特性及其对砂浆性能的影响[J].建筑材料学报,2021,24(5):937-945

复制
分享
文章指标
  • 点击次数:190
  • 下载次数: 461
  • HTML阅读次数: 21
  • 引用次数: 0
历史
  • 收稿日期:2020-07-23
  • 最后修改日期:2020-09-07
  • 录用日期:2020-09-08
  • 在线发布日期: 2021-12-15
文章二维码