基于分子动力学两集料间沥青的拉伸黏附机理
作者:
作者单位:

1.福州大学 机械工程及自动化学院,福建 福州 350108;2.福州大学 土木工程学院,福建 福州 350108

作者简介:

潘 伶(1969—),女,福建福州人,福州大学教授,硕士生导师,博士.E-mail:panling@fzu.edu.cn

通讯作者:

林旭健(1969—),女,福建福州人,福州大学教授,硕士生导师,博士.E-mail:xjl@fzu.edu.cn

中图分类号:

U416.217

基金项目:

国家自然科学基金资助项目(51875105,51708120);晋江市福大科教园区发展中心科研项目(2019-JJFDKY-54);福建省交通运输科技项目(201509)


Tensile Adhesion Mechanism of Asphalt Confined in Two Aggregates Based on Molecular Dynamics
Author:
Affiliation:

1.School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China;2.School of Civil Engineering, Fuzhou University, Fuzhou 350108, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    基于分子动力学(MD)模拟,建立了两集料间沥青的模型,研究了拉伸速率、温度对沥青-集料界面拉伸应力-位移曲线的影响,从原子尺度分析了沥青-集料界面的拉伸破坏形式和黏附机理,同时通过拟合拉伸应力-位移曲线,提出了适用于宏观数值分析的内聚力模型.结果表明:当拉伸应力超过应力峰值后,沥青-集料的破坏由以黏附破坏为主转变为以黏聚破坏为主;拉伸速率越大,应力峰值越大;温度越高,应力峰值越小;沥青在拉伸应力达到应力峰值之前保持弹性状态,此时变形可逆,当拉伸应力超过应力峰值后,受到的损伤不可逆.

    Abstract:

    Based on molecular dynamics (MD) simulation, a model of asphalt confined in two aggregates was constructed, and the effects of tensile rate and temperature on the tensile stress-displacement curve of asphalt-aggregate interface were studied. The tensile failure mode and adhesion mechanism of asphalt-aggregate interface were analyzed in atomic nanoscale. By fitting the tensile stress-displacement curves, the cohesive model for macro numerical analysis was proposed. The results show that the failure of asphalt-aggregate changes from adhesive failure to cohesive failure when the tensile stress exceeds the peak stress. The peak stress increases with the tensile velocity and decreases with the temperature. Before the tensile stress reaches the peak stress, the asphalt remains in an elastic state, and the deformation is reversible. When the tensile stress exceeds the peak stress, the damage is irreversible.

    图1 沥青各组分分子模型Fig.1 Molecular structures of asphalt three-components
    图2 受限沥青分子模型Fig.2 Molecular model of restricted asphalt
    图3 SiO2晶胞模型和集料层模型Fig.3 Unit cell model of SiO2 and SiO2 aggregate layer model (size: nm)
    图4 两集料间沥青模型Fig.4 Model of asphalt confined in two aggregates
    图5 MD模拟过程中界面的拉伸应力-位移曲线Fig.5 σ-sz curve of interface in MD simulation
    图6 σ-sz曲线中对应点模型的正视图和截面俯视图Fig.6 Forward view and section top view of the corresponding point model in σ-sz curve
    图7 不同温度下界面的σ-sz曲线Fig.7 σ-sz curves of interface at different temperatures
    图8 不同拉伸速率下界面的σ-sz曲线Fig.8 σ-sz curves of interface under different tensile rates
    图9 MD模拟界面σ-sz曲线及其CZM模拟曲线Fig.9 MD simulation interface σ-sz curves and its CZM simulation curves
    图10 “加载-卸载-加载”过程界面的σ-sz曲线Fig.10 σ-sz curves of interface under “loading-unloading-loading” process
    表 1 沥青的内聚能密度以及溶解度参数的MD计算值和试验值Table 1 MD simulation and test values of cohesive energy density and solubility parameters of asphalt
    参考文献
    [1] SIREESH S, DEEPTI A, SUBRAHMANYAM C, et al. Micro-mechanical interaction of activated fly ash mortar and reclaimed asphalt pavement materials[J]. Construction and Building Materials, 2016, 123: 424-435.
    [2] CHEN Z W, XIE J, XIAO Y, et al. Characteristics of bonding behavior between basic oxygen furnace slag and asphalt binder[J]. Construction and Building Materials, 2014, 64: 60-66.
    [3] WEI J M, DONG F Q, LI Y N, et al. Relationship analysis between surface free energy and chemical composition of asphalt binder[J]. Construction and Building Materials, 2014, 71:116-123.
    [4] WANG H, WANG J, CHEN J Q. Micromechanical analysis of asphalt mixture fracture with adhesive and cohesive failure[J]. Engineering Fracture Mechanics, 2014, 132:104-119.
    [5] FISCHER H R, DILLINGH E C, HERMSE C G M. On the interfacial interaction between bituminous binders and mineral surfaces as present in asphalt mixtures[J]. Applied Surface Science, 2013, 265:495-499.
    [6] 王岚,张乐,刘旸.老化前后沥青与胶粉相容性的分子动力学研究[J].建筑材料学报,2019,22(3):474-479.
    [7] 朱建勇.沥青胶结料自愈合行为的分子动力学模拟[J].建筑材料学报,2018,21(3):433-439.
    [8] SUN D Q, LIN T B, ZHU X Y, et al. Indices for self-healing performance assessments based on molecular dynamics simulation of asphalt binders[J]. Computational Materials Science, 2016, 114:86-93.
    [9] XU G J, WANG H. Study of cohesion and adhesion properties of asphalt concrete with molecular dynamics simulation[J]. Computational Materials Science, 2016, 112:161-169.
    [10] ZHANG L Q, GREENFIELD M L. Analyzing properties of model asphalts using molecular simulation[J]. Energy & Fuels, 2007, 21(3):1712-1716.
    [11] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1):1-19.
    [12] SUN H. Ab initio calculations and force field development for computer simulation of polysilanes[J]. Macromolecules, 1995, 28 (3):701-712.
    [13] SUN H. Compass: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds [J]. Journal of Physical Chemistry B, 1998, 102(38):7338-7364.
    [14] ENSLEY E K. Thermodynamics of asphalt intermolecular interactions and asphalt-aggregate interactions[J]. Developments in Petroleum Science, 1994, 40:401-426.
    [15] REDELIUS P G. Solubility parameters and bitumen[J]. Fuel, 2000, 79(1):27-35.
    [16] WANG P, DONG Z J, TAN Y Q, et al. Investigating the interactions of the saturate, aromatic, resin, and asphaltene four fractions in asphalt binders by molecular simulations[J]. Energy & Fuels, 2015, 29(1): 112-121.
    [17] DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2):100-104.
    [18] BARENBLATT G I. The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks[J]. Journal of Applied Mathematics and Mechanics, 1959, 23(3):622-636.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

潘伶,张晋铭,吕志田,林旭健.基于分子动力学两集料间沥青的拉伸黏附机理[J].建筑材料学报,2021,24(5):1054-1059

复制
分享
文章指标
  • 点击次数:221
  • 下载次数: 687
  • HTML阅读次数: 23
  • 引用次数: 0
历史
  • 收稿日期:2020-07-23
  • 最后修改日期:2020-10-07
  • 录用日期:2020-11-18
  • 在线发布日期: 2021-12-15
文章二维码