利用Wiener过程探究镁水泥混凝土中涂层钢筋在盐类环境下的腐蚀寿命
作者:
作者单位:

1.兰州理工大学 土木工程学院,甘肃 兰州 730050;2.兰州理工大学 甘肃省土木工程防灾减灾重点实验室,甘肃 兰州 730050

作者简介:

乔宏霞(1977—),女,山西应县人,兰州理工大学教授,博士生导师,博士.E-mail:qhxlut7706@163.com

中图分类号:

TU528.571

基金项目:

国家自然科学基金资助项目(51468039,51868044)


Corrosion Life Investigation of Coated Steel Bars in Magnesium Cement Concrete under Salt Solution Environment Using Wiener Process
Author:
Affiliation:

1.College of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China;2.Gansu Key Laboratory of Civil Engineering Disaster Prevention and Reduction, Lanzhou University of Technology, Lanzhou 730050, China

Fund Project:

This work was financially supported by the Natural Science Foundation of China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    采用氯盐溶液和硫酸盐溶液浸泡镁水泥钢筋混凝土构件,使构件中的涂层钢筋加速锈蚀,并利用电化学工作站进行电化学试验;以腐蚀电流密度作为钢筋耐久性退化指标,建立一元Wiener过程预测模型进行钢筋腐蚀寿命预测.结果表明:在氯盐溶液环境下,镁水泥混凝土构件中的钢筋受腐蚀问题较之硫酸盐溶液环境更为突出,且涂层在2种盐溶液环境中均对钢筋起到了较好的防护效果;在氯盐溶液环境中,涂层钢筋在1 500 d附近进入中等腐蚀阶段,在硫酸盐溶液环境中,涂层钢筋在22 000 d进入中等腐蚀阶段.

    Abstract:

    The magnesium cement reinforced concrete components were soaked in chloride and sulfate solutions to accelerate the corrosion of the coated steel bars in the components. The electrochemical workstation was used for electrochemical tests; the corrosion current density was used as the durability degradation index of the steel bars to establish a unary Wiener process. The prediction model was used to predict the corrosion life of steel bars. The results have shown that the corrosion of steel bars in magnesium cement concrete components is more prominent in the chloride salt solution environment than in the sulfate solution environment, and the coating has a better protective effect on the steel bars in the two salt solution environments. In the chloride salt solution environment, the coated steel bars enter a moderate corrosion stage around 1 500 days, and the coated steel bars in sulfate solution environment enter a moderate corrosion stage at 22 000 days.

    表 6 氯盐溶液环境中涂层钢筋腐蚀电流密度增量ΔicorrTable 6 Corrosion current density increment Δicorr of coated steel bar in chloride salt solution environment
    表 7 硫酸盐溶液环境中涂层钢筋腐蚀电流密度增量ΔicorrTable 7 Corrosion current density increment Δicorr of coated steel bar in sulfate solution environment
    表 5 硫酸盐溶液环境中裸露钢筋与涂层钢筋的腐蚀电流密度Table 5 Corrosion current density of bare steel bars and coated steel bars in sulfate solution environment
    表 4 氯盐溶液环境中裸露钢筋与涂层钢筋的腐蚀电流密度Table 4 Corrosion current density of bare steel bars and coatedsteel bars in chloride salt solution environment
    表 1 达克罗涂层主要成分Table 1 Main components of DKL coating
    图1 三电极系统电解池示意图Fig.1 Schematic diagram of electrolytic cell of three electrode system
    图2 氯盐溶液环境中的裸露钢筋极化曲线Fig.2 Polarization curves of bare steel bar in chloride salt solution environment
    图3 氯盐溶液环境中的涂层钢筋极化曲线Fig.3 Polarization curves of coated steel bar in chloride salt solution environment
    图4 硫酸盐溶液环境中的裸露钢筋极化曲线Fig.4 Polarization curves of bare steel bars in sulfate solution environment
    图5 硫酸盐溶液环境中的涂层钢筋极化曲线Fig.5 Polarization curves of coated steel bar in sulfate solution environment
    图6 氯盐溶液环境中涂层钢筋P-P图Fig.6 P-P diagram of coated steel bar in chloride saltsolution environment
    图7 氯盐溶液环境中涂层钢筋去趋势P-P图Fig.7 Detrend P-P diagram of coated steel bar in chloride salt solution environment
    图8 硫酸盐溶液环境中涂层钢筋P-P图Fig.8 P-P diagram of coated steel bar in sulfate solution environment
    图9 硫酸盐溶液环境中涂层钢筋去趋势P-P图Fig.9 Detrend P-P diagram of coated steel bar in sulfate solution environment
    图10 氯盐溶液环境中涂层钢筋可靠度Fig.10 Reliability of coated steel bar in chloride salt solution environment
    图11 氯盐溶液环境中涂层钢筋概率密度Fig.11 Probability density of coated steel bar in chloride salt solution environment
    图12 硫酸盐溶液环境中涂层钢筋可靠度Fig.12 Reliability of coated steel bar in sulfate solution environment
    图13 硫酸盐溶液环境中涂层钢筋概率密度Fig.13 Probability density of coated steel bar in sulfate solution environment
    表 3 腐蚀电流密度与钢筋腐蚀程度对应关系Table 3 Corresponding relationship between corrosion current density and corrosion degree of reinforcement
    表 2 镁水泥钢筋混凝土配合比Table 2 Mix proportion of magnesium cement reinforced concrete
    参考文献
    [1] 廉发军.盐渍土地区房屋基础的防腐措施[J].全面腐蚀控制,2019,33(7):83-84.
    [2] 汪林,甘泓,于福亮,等.西北地区盐渍土及其开发利用中存在问题的对策[J].水利学报, 2001(6):90-95.
    [3] 李颖,余红发,董金美,等.氯氧镁水泥的水化产物、相转变规律和抗水性评价方法的研究进展[J].硅酸盐学报,2013,41(11):1465-1473.
    [4] 严育通,景燕,马军.氯氧镁水泥的研究进展[J].盐湖研究,2008(1):60-66.
    [5] 文静,余红发,吴成友,等. 氯氧镁水泥水化历程的影响因素及水化动力学 [J]. 硅酸盐学报,2013,41(5):588-596.
    [6] MAZURANIC C, BILLINSKI H, MATKOVIC B. Reaction products in the system MgCl2-NaOH-H2O [J]. Journal of the American Ceramic Society,1982,65(10):523-526.
    [7] POWER I M, DIPPLE G M, FRANCIS P S. Assessing the carbon sequestration potential of magnesium oxychloride cement building materials[J].Cement and Concrete Composites,2017,78:97-107.
    [8] 乔宏霞,巩位,程千元,等. 盐湖地区镁水泥钢筋混凝土耐久性试验[J]. 煤炭学报,2015,40(增刊2):346-352.
    [9] 乔宏霞,巩位,陈广峰,等. 基于极化曲线的镁水泥混凝土中钢筋腐蚀试验[J]. 华中科技大学学报(自然科学版),2016,44(1):6-10.
    [10] 乔宏霞,巩位,高升,等. 镁水泥混凝土中钢筋的电化学腐蚀研究 [J]. 材料科学与工艺,2016,24(1):63-69.
    [11] 乔宏霞,巩位,王鹏辉,等.硫酸盐环境氯氧镁水泥混凝土中钢筋防护试验[J].西南交通大学学报,2017,52(2):247-253.
    [12] 杨勇涛,贡金鑫,赵尚传.钢筋混凝土结构中钢筋的腐蚀电流密度[J].公路交通科技(应用技术版),2010,6(5):135-139.
    [13] 朱磊,左洪福,蔡景.基于Wiener过程的民用航空发动机性能可靠性预测[J].航空动力学报,2013,28(5):1006-1012.
    [14] 安秀杰.非线性模拟电路Wiener核故障特征提取的优化方法研究[D].哈尔滨:哈尔滨理工大学,2014.
    [15] 王兵,郑秋红,郭浩.基于Shannon-Wiener指数的中国森林物种多样性保育价值评估方法[J].林业科学研究,2008,21(2):268-274.
    [16] 彭宝华.基于Wiener过程的可靠性建模方法研究[D].长沙:国防科学技术大学,2010.
    [17] COX D R, MILLER H D. The theory of stochastic processes[M]. London: Chapman and Hall, 1965:5-25.
    [18] 杨兴民,刘保东,李娟.基于Gaussian Copula与t-Copula的沪深股指相关性分析[J].山东大学学报(理学版),2007,42(12):63-68,72.
    相似文献
    引证文献
引用本文

乔宏霞,杨振清,王鹏辉,温少勇.利用Wiener过程探究镁水泥混凝土中涂层钢筋在盐类环境下的腐蚀寿命[J].建筑材料学报,2021,24(5):986-993

复制
分享
文章指标
  • 点击次数:205
  • 下载次数: 430
  • HTML阅读次数: 19
  • 引用次数: 0
历史
  • 收稿日期:2020-07-01
  • 最后修改日期:2020-08-16
  • 录用日期:2020-09-01
  • 在线发布日期: 2021-12-15
文章二维码