分级等荷循环受压下橡胶水泥砂浆的疲劳损伤演化
作者:
作者单位:

安徽理工大学 土木建筑学院,安徽 淮南 232001

作者简介:

杨荣周(1993—),男,安徽淮南人,安徽理工大学博士生.E-mail:Rongzhouy@outlook.com

通讯作者:

徐 颖(1965—),男,安徽泗县人,安徽理工大学教授,博士生导师,博士.E-mail:yxu@aust.edu.cn

中图分类号:

TB332

基金项目:

国家自然科学基金资助项目(52008003、52074009);安徽省重点研究与开发项目(201904a07020081)


Fatigue and Damage Evolution Characteristics of Rubber Cement Mortar under Graded Constant Load Cyclic Compression
Author:
Affiliation:

School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, China

Fund Project:

This work was financially supported by the National Natural Science Foundation of China (52008003、52074009), Key Research and Development Program Project of Anhui Province (201904a07020081), Nature Science Foundation of Anhui (1908085QE213).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探究橡胶水泥基材料的疲劳及损伤演化特性,以橡胶水泥砂浆为研究对象,对其分别进行10、20、30 kN荷载等级下的10次(低次/限次)等荷循环加-卸载试验,并对试件产生的加载应变、加载应变差、累积残余应变、累积残余应变差、不闭合度、累积残余应变损伤(塑性损伤),以及加载和卸载变形模量进行分析.结果表明:试件的加载应变和累积残余应变均随着循环荷载等级的增大而增大;试件的加载应变差和累积残余应变差随着循环次数的增加以互相交错波动的形式逐渐减小至0附近;随着循环次数的增加,试件的不闭合度减小,塑性损伤增大,且两者均随循环荷载等级增大而增大;试件的加载和卸载变形模量随着循环次数的增加以分段线性波动的形式增大,也随着循环荷载等级的增大而增大.同时建立了基于临界塑性损伤假定条件下的塑性损伤模型和刚度变化模型,对试件在高次/不限次等荷循环加-卸载过程中的疲劳塑性损伤和刚度演化特征进行了初步预测和表征.

    Abstract:

    To explore the fatigue and damage evolution characteristics of rubber cement-based materials, 10 (low/finite cycles) equal load cyclic loading-unloading cycle tests were carried out on rubber cement mortar under 10,20,30 kN load grades respectively. The loading strain, the loading strain difference, the cumulative residual strain, the cumulative residual strain difference, the degree of non-closure, the cumulative residual strain damage (plastic damage), and the modulus of deformation under loading and unloading were analyzed. The results show that both the loading strain and the cumulative residual strain increase with the increase of the cyclic load grade, and the loading strain difference and the cumulative residual strain difference gradually decrease to about 0 with the increase of the number of cycles. With the increase of the number of cycles, the degree of non-closure decreases, and the plastic damage increases, and both the degree of non-closure and plastic damage increase with the increase of the cyclic load grade. The deformation modulus of loading and unloading increases in the form of piecewise linear fluctuation with the increase of the number of cycles, and also increases with the increase of the cyclic load grade. Finally, both the plastic damage model and stiffness change model based on critical plastic damage assumption were established to predict the fatigue plastic damage and stiffness evolution characteristics of specimens in the process of loading-unloading with high/unlimited cycles.

    图1 3种荷载等级循环加-卸载路径图Fig.1 Cyclic loading-unloading paths of three kinds of constant load levels
    图2 试件轴向力-轴向位移曲线和典型加-卸载滞回曲线Fig.2 Axial force-axial displacement curves and typical loading-unloading hysteresis curve
    图3 循环加-卸载下疲劳性能分析原理图Fig.3 Schematic diagram of fatigue performance analysis under cyclic loading-unloading
    图4 试件的累积残余应变与加载应变的关系Fig.4 Relationship between cumulative residual strain and loading strain of specimens
    图5 试件加载应变差、累积残余应变差与循环次数的关系Fig.5 Relationship between loading strain difference, cumulative residual strain difference and number of cycles of specimens
    图6 试件不闭合度、塑性损伤与循环次数的关系Fig.6 Relationship between degree of non-closure, cumulative residual strain damage and number of cycles of specimens
    图7 试件塑性损伤与循环次数的非线性拟合曲线Fig.7 Nonlinear fitting curves of cumulative residual strain damage and number of cycles of specimens
    图8 试件加载和卸载变形模量与循环次数的关系Fig.8 Relationship between deformation modulus of loading-unloading and number of cycles
    图9 普通水泥砂浆和橡胶水泥砂浆局部切割区域的细观形貌Fig.9 Mesoscopic morphology of local cutting areas of normal cement mortar and rubber cement mortar
    图10 橡胶颗粒、砂以及水泥浆体三者之间相互作用的示意图Fig.10 Schematic diagram of interaction among rubber particle, sand and cement paste
    图11 等荷循环加-卸载模式示意图Fig.11 Schematic diagrams of constant load cyclic loading-unloading modes
    图12 塑性损伤模型和刚度变化模型的示意图Fig.12 Schematic diagrams of plastic damage model and stiffness change model
    表 1 循环加-卸载方式Table 1 Cyclic loading-unloading method
    参考文献
    [1] 冯文贤, 刘锋, 郑万虎, 等.橡胶混凝土疲劳性能的试验研究[J].建筑材料学报,2012,15(4):469-473.
    [2] 王立燕,王超,张亚梅,等.运用声发射技术研究橡胶混凝土疲劳损伤过程[J].东南大学学报(自然科学版), 2009, 39(3): 574-579.
    [3] 亢景付, 任海波, 张平祖. 橡胶混凝土的抗裂性能和弯曲变形性能[J].复合材料学报, 2006, 23(6): 158-162.
    [4] 刘春生,朱涵,李志国, 等.橡胶细集料水泥砂浆基本性能研究[J].混凝土, 2005(7): 38-42.
    [5] 王龙, 范璐璐. 橡胶颗粒水泥混凝土与基质混凝土路用性能对比分析[J]. 哈尔滨工业大学学报, 2016, 48(3): 77-81.
    [6] SEGRE N, JOEKES I. Use of tire rubber particles as addition to cement paste[J].Cement and Concrete Research, 2000, 30(9):1421-1425.
    [7] LÜ J, ZHOU T H, DU Q, et al. Experimental and analytical study on uniaxial compressive fatigue behavior of self-compacting rubber lightweight aggregate concrete[J].Construction and Building Materials,2020,237:117623.
    [8] 邢颖, 徐杰, 韩庆华,等.部分剪力连接的橡胶集料混凝土-钢组合梁疲劳性能试验研究[J].湖南大学学报(自然科学版),2016,43(7):32-42.
    [9] ZHANG Y M, ZHAO Z. Internal stress development and fatigue performance of normal and crumb rubber concrete[J].Journal of Materials in Civil Engineering,2015,27(2):A4014006.
    [10] LIU F, MENG L Y, NING G F, et al. Fatigue performance of rubber-modified recycled aggregate concrete (RRAC) for pavement[J]. Construction and Building Materials, 2015, 95: 207-217.
    [11] 姜德义,刘文浩,陈结,等.分级不连续循环载荷作用下混凝土的疲劳特性[J].东南大学学报(自然科学版),2019,49(4): 631-637.
    [12] 黄虎,黄凯,张献才,等.循环荷载下胶凝砂砾石材料的滞后及阻尼效应[J].建筑材料学报,2018,21(5):739-748.
    [13] ZHOU Y Q, SHENG Q, LI N N, et al. Numerical analysis of the mechanical properties of rock materials under tiered and multi-level cyclic load regimes[J]. Soil Dynamics and Earthquake Engineering,2020,135:106186.
    [14] 杨荣周,徐颖,陈佩圆,等.干、湿养护下橡胶细集料水泥砂浆压缩破裂及能量演化特性[J]. 材料导报,2020,34(4):4049-4055.
    [15] NEHDI M, KHAN A. Flexible crumb tire rubber-filled cement mortars as a protective system for buried infrastructure[J].Journal of ASTM International, 2005,2(1):1-15
    [16] ZHOU X, LU D C, DU X L, et al. A 3D non-orthogonal plastic damage model for concrete[J]. Computer Methods in Applied Mechanics and Engineering, 2020,360:112716.
    [17] 余寿文,冯西桥.损伤力学[M].北京: 清华大学出版社,1997:32-35.
    [18] PENG H H, FAN J Y, ZHANG X, et al. Computed tomography analysis on cyclic fatigue and damage properties of rock salt under gas pressure[J]. International Journal of Fatigue, 2020, 134:105523.
    [19] ZHENG Q S, LIU A L, SUN P, et al. Dynamic and damage properties of artificial jointed rock samples subjected to cyclic triaxial loading at various frequencies[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 128:104243.
    [20] WANG Z L, XIAO H. Direct modeling of multi-axial fatigue failure for metals[J]. International Journal of Solids and Structures, 2017, 125(15):216-231.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨荣周,徐颖,郑强强,陈佩圆,王佳.分级等荷循环受压下橡胶水泥砂浆的疲劳损伤演化[J].建筑材料学报,2021,24(5):961-969

复制
分享
文章指标
  • 点击次数:184
  • 下载次数: 430
  • HTML阅读次数: 22
  • 引用次数: 0
历史
  • 收稿日期:2020-06-24
  • 最后修改日期:2020-10-19
  • 录用日期:2020-10-30
  • 在线发布日期: 2021-12-15
文章二维码