基于不同算法的道路混凝土干缩神经网络预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(51278059);中央高校基本科研业务费专项资金项目(2013G5210010,2013G2313001)


Shrinkage Prediction of Pavement Cement Concrete Based onDifferent Algorithms Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对多种因素下道路混凝土干缩预测模型难以建立的难题,基于BP神经网络理论建立了干缩预测模型.结果表明:BP神经网络预测道路混凝土干缩可获得较高准确度,且具有良好的泛化能力,在5种算法中,Trainlm训练速度快,但误差大,Traingda函数训练速度居中,误差最小,用其训练的神经网络可很好映射道路混凝土配合比与干缩率之间的非线性关系.

    Abstract:

    The mathematical prediction model for shrinkage of pavement cement concrete under multi factors is difficult to establish. Therefore, the BP neural network model was developed to predict shrinkage of concrete. Results show that BP neural network can accurately predict the shrinkage of concrete and the model has good ability to generalize. By comparing five different algorithms, the Trainlm algorithm is quick to be trained but has big error, whereas the Traingda algorithm can be trained not as quick as Trainlm but has the minimum error. Hence, the neural network model by applying Traingda algorithm can well reflect the nonlinear relationship between materials mix proportion and the dry shrinkage ratio of pavement cement concrete.

    参考文献
    相似文献
    引证文献
引用本文

周胜波,申爱琴,张远,万晨光,赵洪基.基于不同算法的道路混凝土干缩神经网络预测[J].建筑材料学报,2014,17(3):414-420

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-03-30
  • 最后修改日期:2013-07-17
  • 录用日期:
  • 在线发布日期: 2014-06-25
  • 出版日期:
文章二维码