碱性环境中复合改性矿渣纤维的结构变化
作者:
基金项目:

陕西省科技统筹创新工程计划项目(2012KTCG01 05)


Structural Changes of Composite Slag Fiber Modifiedunder Alkali Environment
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用XRD衍射仪、高分辨率固态核磁共振仪和带能谱仪的扫描电子显微镜,对碱侵蚀前后的纯矿渣纤维和2种复合改性矿渣纤维的结构特征及表面形貌进行了测试与分析.结果表明:3种纤维原样均呈典型的玻璃态形式;提高酸度系数可增加纤维中硅氧网络的聚合度,而铝以四配位形式参与网络形成;碱侵蚀后,酸度系数较高的纤维中29Si谱中Q0结构单元显著降低或消失,可形成大量的Q1和Q2,水化产物聚合度增加;27Al谱在化学位移δ为76处新增加了六配位八面体的峰,提高酸度系数可减小该峰所占比例,证明Al—O结构解体程度降低;调整酸度系数至12,可有效提高复合改性矿渣纤维的抗碱能力.

    Abstract:

    Structural changes of pure blast furnace slag fiber and composite slag fibers modified(CSFM) from initial status to treatment by alkali solution has been observed using X ray diffraction(XRD), solid state magic angle spinning nuclear magnetic resonance(MAS NMR) spectroscopy and scanning electron microscope(SEM) with energy dispersive X ray spectroscopy(EDXS). It is demonstrated that amorphous phases are primary and polymerization of silica tetrahedral network increases due to the acid degree coefficient(ADC), with unique presence of tetrahedral aluminum in initial CSFMs. After the fibers immersed in alkali solution for 180 days, both Q1 and Q2 unit play a predominating role from 29Si MAS NMR spectra of higher ADC fibers, along with Q0 remarkably decreased and even disappeared. The results suggest that degree of polymerization in the hydration products increase. New 6 coordinated octahedral peaks at δ=76 site appear in 27Al MAS NMR spectra, compared with initial CSFMs. Areas of the peaks decrease as a result of less depolymerization of tetrahedral aluminum network with increasing ADC. CSFM can effectively improve alkali resistance as its ADC up to 12.

    参考文献
    [1]HBERG I.Technological development of the mineral wool industry in Europe[J].The Annals of Occupational Hygiene,1987,31(4B):529 545.
    [2]田英良,孙诗兵.新编玻璃工艺学[M].北京:中国轻工业出版社,2009:143 154.
    TIAN Ying liang,SUN Shi bing.Glasses technology[M].Beijing:China Light Industry Press,2009:143 154.(in Chinese)
    [3]HUANG Gu.Tensile behaviours of some high performance filaments after NaOH treatment[J].Materials and Design,2008,29(10):1893 1896.
    [4]WEI Bin,CAO Hailin,SONG Shenhua.Tensile behavior contrast of basalt and glass fibers after chemical treatment[J].Materials and Design,2010,31(9):4244 4250.
    [5]ZINCK P,MDER E,GERARD J F.Role of silane coupling agent and polymeric film former for tailoring glass fiber sizings from tensile strength measurements[J].J Mater Sci,2001,36(21):5245 5252.
    [6]PAUL A.Chemical durability of glasses,a thermodynamic approach[J].J Mater Sci,1977,12(11):2246 2268.
    [7]OKA Y,RICKER S,TOMOZAWA M.Calcium deposition on glass surface as an inhibitor to alkaline attack[J].J Am Ceram Soc,1979,62(11):631 632.
    [8]SCHEDFFLER C,FRST T,MDER E,et al.Aging of alkali resistant glass and basalt fibers in alkaline solutions:Evaluation of the failure stress by Weibull distribution function[J].Journal of Non crystalline Solids,2009,355(52 54):2588 2595.
    [9]SCHNEIDER E,STEBBINS J F,PINESA A.Speciation and local structure in alkali and alkaline earth silicate glasses:Constraints from 29Si NMR spectroscopy[J].Journal of Non crystalline Solids,1998,226(1 2):29 40.
    [10]ZHANG P,DUNLAP C,FLORIAN P,et al.Silicon site distributions in an alkali silicate glass derived by two dimensional 29Si nuclear magnetic resonance[J].Journal of Non crystalline Solids,1996,204(3):294 300.
    [11]SCHMCKER M,MACKENZIE K J D,SCHNEIDER H,et al.NMR studies on rapidly solidified SiO2 Al2O3 and SiO2 Al2O3 Na2O glasses[J].Journal of Non crystalline Solids,1997,217(1 2):99 105.
    [12]GRUTZECK M W.A new model for the formation of calcium silicate hydrate(C S H)[J].Material Research Innovation,1999,3(3):160 170.
    [13]GRUTZECK M,BENESI A,FANNING B.Silicon 29 magic angle spinning nuclear magnetic resonance study of calcium silicate hydrates[J].J Amer Ceram Soc,1989,72(4):665 668.
    [14]CHEN J J,THOMAS J J,TAYLOR H F W,et al.Solubility and structure of calcium silicate hydrate[J].Cement and Concrete Research,2004,34(9):1499 1519.
    [15]RICHARDSON I G.The nature of C S H in hardened cements[J].Cement and Concrete Research,1999,29(8):1131 1147.
    [16]LIPPMAA E,MGI M,SAMOSON A,et al.Structure studies of silicates by solid state high resolution 29Si NMR[J].Journal of America Chemistry Society,1980,102(15):4889 4893.
    [17]JAKOBSEN A,ANDERSON S D,JAKOBSEN H J.Characterization of white Portland cement hydration and the C S H structure in the presence of sodium aluminate by 27Al and 29Si MAS NMR spectroscopy[J].Cement and Concrete Research,2004,34(5):857 868.
    [18]MORTEN D A,JAKOBSEN H J,SKIBSTED J.A new aluminium hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy[J].Cement and Concrete Research,2006,36(1):3 17.
    [19]王磊,何真,张博,等.粉煤灰水泥水化的核磁共振定量分析[J].硅酸盐学报,2010,38(11):2212 2216.
    WANG Lei,HE Zhen,ZHANG Bo,et al.Quantitative analysis of fly ash cement hydration by 29 Si MAS NMR[J].Journal of the Chinese Ceramic Society,2010,38(11):2212 2216.(in Chinese)
    [20]MACKENZIE K J D,SMITHM E.Multinuclear solid state NMR of inorganic materials[M].Pergamon,UK:Pergamon Materials Series,2002:271 324.
    [21]张吉秀,孙恒虎,万建华,等.煤矸石胶凝材料水化产物及聚合度分析[J].中南大学学报:自然科学版,2011,42(2):329 334.
    ZHANG Ji xiu,SUN Heng hu,WAN Jian hua,et al. 29Si polymerization degree of hydrates in coal gangue added cement[J].Journal of Central South University:Science and Technology,2011,42(2):329 334.(in Chinese)
    [22]JIANG Weimin.Alkali activated cementitious materials mechanisms,microstructure and properties[D].Pennsylvania,US:The Pennsylvania State University,1997.
    [23]SHIMODA Keiji,TOBU Yasuhiro,KANEHASHI Koji,et al.Total understanding of the local structures of an amorphous slag:Perspective from multi nuclear(29Si,27Al,17O,25Mg,and 43Ca) solid state NMR[J].Journal of Non crystalline Solids,2008,354(10 11):1036 1043.
    [24]BROUGH A R,ATKINSON A.Sodium silicate based,alkali activated slag mortars(Part I):Strength,hydration and microstructure[J].Cement and Concrete Research,2002,32(6):865 879.
    引证文献
引用本文

李晓光,刘云霄,马昕.碱性环境中复合改性矿渣纤维的结构变化[J].建筑材料学报,2013,(6):955-961

复制
分享
文章指标
  • 点击次数:997
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2012-08-05
  • 最后修改日期:2013-02-07
  • 在线发布日期: 2013-12-25
文章二维码