页岩陶粒混凝土高温性能特征研究
作者:
基金项目:

北京市自然科学基金重大项目(8100001)


Study on Performance of Shale Ceramsite Concrete afterExposure to High Temperature
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    设计了不同配合比的页岩陶粒混凝土,观察了600℃高温后不同湿含量(质量分数)页岩陶粒混凝土的爆裂情况,测试了200,400,600,800,1000℃高温后页岩陶粒混凝土的质量损失和相对残余抗压强度.结果表明:随着页岩陶粒掺量的增加,页岩陶粒混凝土高温爆裂率增大;页岩陶粒混凝土湿含量越高,其高温爆裂率越大;掺0.91kg/m3长度为20mm的网状聚丙烯纤维可以使页岩陶粒掺量580kg/m3的全轻混凝土不发生高温爆裂.经历800℃和1000℃高温后,全轻混凝土质量损失比普通混凝土小.随着温度的升高,页岩陶粒混凝土相对残余抗压强度呈下降趋势;页岩陶粒掺量越大,混凝土相对残余抗压强度越大.

    Abstract:

    Different mix proportions of shale ceramsite concrete were designed. The spalling of shale ceramsite concretes with different moisture contents(by mass) after exposure to 600℃ was observed. And mass loss and relative residual compressive strength of shale ceramsite concrete after exposure to 200, 400, 600, 800, 1000℃ were tested. The results indicate that the spalling rate of shale ceramsite concrete increases with increasing use level of shale ceramsite in concrete, and the higher the moisture content in shale ceramsite concrete, the higher the spalling rate. The spalling of full lightweight aggregate concrete with 580kg/m3 shale cermasite added is prevented by incorporating 0.91kg/m3 reticular polypropylene fiber of 20mm length. The mass loss of full lightweight aggregate concrete is less than that of ordinary concrete after exposure to 800℃ and 1000℃. As the temperature rises, the relative residual compressive strength of shale ceramsite concrete declines. And the higher the use level of shale ceramsite, the higher the relative residual compressive strength of concrete.

    参考文献
    [1]KALIFA P,MENNETEAU F D,QUENARD D.Spalling and pore pressure in HPC at high temperatures[J].Cement and Concrete Research,2000,30(12):1915 1927.
    [2]SANJAYAN G,STOCKS L J.Spalling of high strength silica fume concrete in fire[J].ACI Materials Journal,1993,90(2):170 173.
    [3]朋改非,陈延年,冯乃谦.高强混凝土遭受高温的性能衰减特征[J].混凝土,1999(1):16 19.
    PENG Gai fei,CHEN Yan nian,FENG Nai qian.Deterioration of high strength concrete exposed to high temperature[J].Concrete,1999(1):16 19.(in Chinese)
    [4]李敏,钱春香,孙伟.高强混凝土火灾后性能变化规律研究[J].工业建筑,2002,32(10):34 36.
    LI Min,QIAN Chun xiang,SUN Wei.The varying rule and the non destructive measuring of high performance concrete after fire[J].Industrial Construction,2002,32(10):34 36.(in Chinese)
    [5]SAVVA A,MANITA P,SIDERIS K K.Influence of elevated temperatures on the mechanical properties of blended cement concretes prepared with limestone and siliceous aggregates[J].Cement & Concrete Composites,2005,27(2):239 248.
    [6]YUKSEL I,SIDDIQUE R,OZKAN O.Influence of high temperature on the properties of concretes made with industrial by products as fine aggregate replacement[J].Construction and Building Materials,2011,25(2):967 972.
    [7]XING Z,BEAUCOUR A L,HEBERT R,et al.Influence of the nature of aggregates on the behaviour of concrete subjected to elevated temperature[J].Cement and Concrete Research,2011,41(4):392 402.
    [8]KALIFA P,CHENE G,GALLE C.High temperature behavior of HPC with polypropylene fibers from spalling to microstructure[J].Cement and Concrete Research,2001,31(10):1487 1499.
    [9]HEO Y S,SANJAYAN J G,HAN C G,et al.Synergistic effect of combined fibers spalling protection of concrete in fire[J].Cement and Concrete Research,2010,40(10):1547 1554.
    [10]NASSIF A Y.Post firing stress strain hysteresis of concrete subjected to various heating and cooling regimes[J].Fire and Materials,2002,26(3):103 109.
    [11]SANCAK E,SARI Y D,SIMSEK O.Effects of elevated temperature on compressive strength and weight loss of the light weight concrete with silica fume and superplasticizer[J].Cement & Concrete Composites,2008,30(8):715 721.
    [12]UYGUNOGLU T,TOPCU I B.Thermal expansion of self consolidating normal and lightweight aggregate concrete at elevated temperature[J].Construction and Building Materials,2009,23(9):3063 3069.
    [13]曹万智,孙庆霞,周茗如,等.高铝水泥轻骨料混凝土耐高温性研究[J].低温建筑技术,2009(2):16 18.
    CAO Wan zhi,SUN Qing xia,ZHOU Ming ru,et al.Research of high aluminum cement light aggregate concrete exposed to high temperature[J].Low Temperature Architecture Technology,2009(2):16 18.(in Chinese)
    [14]BILODEAU A,KODUR V K R,HOFF G C.Optimization of the type and amount of polypropylene fibres for preventing the spalling of lightweight concrete subjected to hydrocarbon fire[J].Cement & Concrete Composites,2004,26(2):163 174.
    [15]蒋玉川,朋改非,张文斌,等.网状聚丙烯纤维和PVA纤维对高性能混凝土高温性能的影响[J].商品混凝土,2006(4):31 37.
    JIANG Yu chuan,PENG Gai fei,ZHANG Wen bin,et al.Effects of reticular polypropylene fiber and PVA fiber on properties of high performance concrete at high temperatures[J].Ready Mixed Concrete,2006(4):31 37.(in Chinese)
    [16]曾小平,吴冰,江山,等.碳酸钙在高温条件下的变化过程分析[J].广东化工,2010(5):70 72.
    ZENG Xiao ping,WU Bing,JIANG Shan,et al.The analysis for the calcium carbonate at high temperature[J].Guangdong Chemical,2010(5):70 72.(in Chinese)
    [17]PENG Gai fei,HUANG Zhi shan.Change in microstructure of hardened cement paste subjected to elevated temperatures[J].Construction and Building Materials,2008,22(4):593 599.
    [18]JANOTKA I,BAGEL L.Pore structures,permeabilities and compressive strengths of concrete at temperature upto 800℃[J].ACI Materials Journal,2002,99(2):196 200.
    [19]CHAN Y N,PENG G F,ANSON M.Residual strength and pore structure of high strength concrete and normal strength concrete after exposure to high temperatures[J].Cement & Concrete Composites,1999,21(1):23 27.
    相似文献
引用本文

蒋玉川,霍达,滕海文,乔渊.页岩陶粒混凝土高温性能特征研究[J].建筑材料学报,2013,(5):888-893

复制
分享
文章指标
  • 点击次数:1037
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2012-03-30
  • 最后修改日期:2012-04-19
  • 在线发布日期: 2013-10-30
文章二维码