摘要
采用焙烧还原法制备了亚硝酸根插层水滑石(NO2‑LDH),并研究了其对减水剂吸附分散及增强效果的影响.结果表明:NO2‑LDH的层间距和结晶度较原碳酸根型镁铝水滑石均略有降低;NO2‑LDH与减水剂之间存在阴离子交换,降低了减水剂的吸附分散效果,且减水剂分散效果的降低程度随着NO2‑LDH掺量的增加而增大;NO2‑LDH对掺减水剂砂浆抗折强度的影响不明显,对抗压强度略有提升;NO2‑LDH对萘系高效减水剂分散效果的影响大于对聚羧酸系减水剂的影响.
关键词
氯致混凝土钢筋锈蚀是影响混凝土结构耐久性的关键因
减水剂具有优异的吸附分散与增强效果,已成为钢筋混凝土结构中最重要的外加
本文以碳酸根型镁铝水滑石(CO3‑LDH)为原材料,以NaNO2为离子交换剂,通过焙烧还原法制备了NO2‑LDH;以净浆流动度和砂浆强度为评价指标,研究了NO2‑LDH对常用聚羧酸系减水剂、萘系高效减水剂作用效果的影响规律,并结合离子交换原理分析了其影响机理.
CO3‑LDH,比表面积为8 000
首先,将市售水滑石于烘箱中105 ℃烘干24 h,然后置于马弗炉中,以10 ℃/min的升温速率升至500 ℃并恒温4 h,随炉冷却至室温并密封保存,所得粉末为焙烧态镁铝水滑石(CLDH);其次,取1 g CLDH与200 mL 0.5 mol/L、200 mL 0.2 mol/L的NaNO2溶液置于250 mL锥形瓶中,在振荡器上以200 r/min的速率振荡24 h,过滤后用去离子水冲洗3次,并在80 ℃下烘干12 h,所得粉末即为NO2‑LD
采用德国Bruker D8 Advance 型X射线衍射仪(XRD),对焙烧前、后CLDH以及NO2‑LDH的矿物组成进行分析.测试条件为:Cu靶,扫描范围为5°~90°,扫描速率为10 (°)/min,管电压和管电流分别为40 kV和40 mA.
采用美国Thermo Scientific Nicolet 6700型傅里叶变换红外光谱仪(FTIR)对样品进行红外分析.先将样品与溴化钾研磨均匀,再用压力机将其压成透明的薄片.测试条件为:频率范围为4 000~400 c
参照GB/T 8077—2012《混凝土外加剂均匀性试验方法》,测定不同NO2‑LDH掺量下水泥净浆的流动度,以评价NO2‑LDH对减水剂分散效果的影响.
参照GB/T 17671—1999《水泥胶砂强度检验方法(ISO法)》,测定不同NO2‑LDH掺量下水泥砂浆的抗压强度和抗折强度,以评价NO2‑LDH对减水剂增强效果的影响.

图1 CO3‑LDH、CLDH和NO2‑LDH的XRD图谱
Fig.1 XRD patterns of CO3‑LDH, CLDH and NO2‑LDH
由
由

图2 CO3‑LDH、CLDH和NO2‑LDH的FTIR图谱
Fig.2 FTIR spectra of CO3‑LDH, CLDH and NO2‑LDH
(1)在CO3‑LDH图谱的1 365 c
(2)CLDH图谱中1 365 c
(3)NO2‑LDH图谱在1 264 c
固定水灰比为0.29、聚羧酸系减水剂掺量为1.0%或萘系高效减水剂掺量为0.6%,NO2‑LDH的掺量分别为1.0%、2.0%、3.0%、4.0%(等质量替代水泥),测定不同NO2‑LDH掺量下水泥净浆的流动度,以评价其对减水剂分散效果的影响,结果如

图3 NO2‑LDH对掺聚羧酸系减水剂和萘系高效减水剂的净浆流动度影响
Fig.3 Effect of NO2‑LDH on slurry fluidity of polycarboxylic acid superplasticizer and naphthalene superplasticizer
固定水灰比为0.5、胶砂比为1∶3、聚羧酸系减水剂掺量为1.0%或萘系高效减水剂掺量为0.6%,调整NO2‑LDH的掺量分别为0%、1.0%、2.0%、3.0%、4.0%,测定在不同NO2‑LDH掺量下水泥砂浆的抗折强度和抗压强度,结果如图

图4 NO2‑LDH对掺聚羧酸系减水剂和萘系高效减水剂的砂浆抗折强度影响
Fig.4 Effect of NO2‑LDH on the bending strength of mortar mixed with polycarboxylic acid superplasticizer and naphthalene series superplasticizer

图5 NO2‑LDH对掺聚羧酸系减水剂和萘系高效减水剂的砂浆抗压强度影响
Fig.5 Effect of NO2‑LDH on compressive strength of mortar mixed with polycarboxylic acid superplasticizer and
由
由
naphthalene series superplasticizer
为分析NO2‑LDH对掺聚羧酸系减水剂和萘系高效减水剂水泥净浆流动性的影响规律,试验研究了NO2‑LDH与聚羧酸系减水剂(萘系高效减水剂)之间的离子交换行为,测定了离子交换容量,并且对离子交换产物(M1/M2))进行了分析,结果如图

图6 聚羧酸系减水剂和萘系高效减水剂与NO2‑LDH的离子交换性能
Fig.6 Ion exchange properties of polycarboxylic acid superplasticizer and naphthalene superplasticizer with NO2‑LDH

图7 聚羧酸系减水剂、NO2‑LDH、M1及M2的FTIR图谱
Fig.7 FTIR spectra of polycarboxylic acid superplasticizer, NO2‑LDH, M1 and M2

图8 M1和M2的XRD图谱
Fig.8 XRD patterns of M1 and M2
由
由
(1)与离子交换前NO2‑LDH的FTIR图谱相比,与聚羧酸系减水剂交换后NO2‑LDH的FTIR图谱在1 759 c
(2)与萘系高效减水剂交换后,NO2‑LDH的FTIR图谱在1 120、1 035c
由
上述研究结果表明,NO2‑LDH与阴离子型聚羧酸系减水剂和萘系高效减水剂之间存在离子交换行为.减水剂部分离子基团通过交换进入了NO2‑LDH的层间,降低了减水剂的吸附分散效果,表现为随着NO2‑LDH掺量的增加,水泥净浆的流动度降低.
NO2‑LDH对掺减水剂砂浆力学性能的影响表现在两个方面:首先,通过离子交换,NO2‑LDH降低了减水剂的吸附分散效果,在给定水灰比的情况下,砂浆的可塑性降低,不利于砂浆的密实成型,对其硬化强度有一定的负面影响;其次,NO2‑LDH与高效减水剂之间通过离子交换,释放出一定的NO.亚硝酸盐作为常见的水泥增强剂,当其数量增加时,会促进水泥中铝酸三钙(C3A)和硅酸三钙(C3S)的水合作用,从而对砂浆硬化后的强度有一定的提升效
(1)以市售碳酸根型镁铝水滑石为原材料,以不同质量分数的NaNO2溶液为离子交换剂,通过焙烧还原法成功制备了亚硝酸根插层镁铝水滑石(NO2‑LDH),其具有较高的结晶度,且层间距较碳酸根型镁铝水滑石略有减小.
(2)NO2‑LDH与聚羧酸系减水剂和萘系高效减水剂之间存在阴离子交换,降低了所用减水剂的吸附分散效果,且对萘系高效减水剂的影响程度更大.
(3)NO2‑LDH对掺聚羧酸系减水剂、萘系高效减水剂砂浆抗折强度的影响不明显,对抗压强度略有提升.
参考文献
张坚,刘清风.基于非球形颗粒水化堆积的水泥浆氯离子扩散系数预测[J].建筑材料学报, 2023, 26(9):955‑962. [百度学术]
ZHANG Jian, LIU Qingfeng. Prediction for chloride diffusivity of cement paste based on accumulation of hydrated imperfect spherical particles[J]. Journal of Building Materials, 2023, 26(9):955‑962. (in Chinese) [百度学术]
郭群,李晓珍,宋屹林, 等.钢筋阻锈剂在碳化钢筋混凝土中的阻锈作用[J]. 建筑材料学报, 2023, 26(1):21‑28. [百度学术]
GUO Qun, LI Xiaozhen, SONG Yilin, et al. Effect of steel bar corrosion inhibitors in carbonated reinforced concrete[J]. Journal of Building Materials, 2023, 26(1):21‑28. (in Chinese) [百度学术]
杨宇斌.水滑石对钢筋混凝土抗氯盐、硫酸盐腐蚀性能提升机理研究[D]. 包头:内蒙古科技大学, 2023. [百度学术]
YANG Yubin. Study on the mechanism of hydrotalc improving the corrosion resistance of reinforced concrete to chlorine salt and sulfate[D]. Baotou:Inner Mongolia University of Science and Technology, 2023. (in Chinese) [百度学术]
CAO Y H, DONG S G, ZHENG D J, et al. Multifunctional inhibition based on layered double hydroxides to comprehensively control corrosion of carbon steel in concrete[J]. Corrosion Science, 2017, 126:166‑179. [百度学术]
YANG Z X, FISCHER H, CEREZO J, et al. Aminobenzoate modified Mg‑Al hydrotalcites as a novel smart additive of reinforced concrete for anticorrosion applications[J]. Construction and Building Materials, 2013, 47:1436‑1443. [百度学术]
YANG Z X, FISCHER H, POLDER R. Laboratory investigation of the influence of two types of modified hydrotalcites on chloride ingress into cement mortar[J]. Cement and Concrete Composites, 2015, 58:105‑113. [百度学术]
YANG Z X, POLDER R, MOL J M C, et al. The effect of two types of modified Mg‑Al hydrotalcites on reinforcement corrosion in cement mortar[J]. Cement and Concrete Research, 2017, 100:186‑202. [百度学术]
XU J X, SONG Y B, ZHAO Y H, et al. Chloride removal and corrosion inhibitions of nitrate, nitrite‑intercalated MgAl layered double hydroxides on steel in saturated calcium hydroxide solution[J]. Applied Clay Science, 2018, 163:129‑136. [百度学术]
XU J X, WEI J F, MA G X, et al. Effect of MgAl‑NO2 LDHs inhibitor on steel corrosion in chloride‑free and contaminated simulated carbonated concrete pore solutions[J]. Corrosion Science, 2020, 176:108940. [百度学术]
WANG X H, XU J X, TAN Q P. Effect of intercalation of magnesium aluminum nitrite hydrotalcite on the durability of mortar in the presence of chloride and sulfate[J]. Journal of Central South University, 2022, 29(2):546‑560. [百度学术]
关文勋,程冠之,李旺, 等. 干燥条件对缓释型粉体聚羧酸减水剂性能的影响[J]. 建筑材料学报, 2023, 26(3):317‑323. [百度学术]
GUAN Wenxun, CHENG Guanzhi, LI Wang, et al. Effect of drying conditions on properties of slow‑release polycarboxylic acid superplasticizers[J]. Journal of Building Materials, 2023, 26(3):317‑323. (in Chinese) [百度学术]
孙振平,李祖悦,庞敏, 等. 聚羧酸系减水剂的缓释效应及机理[J]. 建筑材料学报, 2022, 25(3):263‑269. [百度学术]
SUN Zhenping, LI Zuyue, PANG Min, et al. Slow‑release effect of polycarboxylate superplasticizers with various functional groups[J]. Journal of Building Materials, 2022, 25(3):263‑269. (in Chinese) [百度学术]
杜宝中,王汝敏,陈博. 室温固相法合成纳米Mg‑Al‑CO3层状双金属氢氧化物[J]. 材料导报, 2009, 23(2):77‑79. [百度学术]
DU Baozhong, WANG Rumin, CHEN Bo. Synthesis of nano‑layered bimetallic hydroxides Mg‑Al‑CO3 by solid phase method at room temperature[J]. Materials Review, 2009, 23(2):77‑79. (in Chinese) [百度学术]
吴波.阻锈阴离子插层改性水滑石的制备及其在水泥砂浆中的应用[D]. 深圳:深圳大学, 2019. [百度学术]
WU Bo. Preparation of antirust anionic intercalation modified hydrotalcite and its application in cement mortar[D]. Shenzhen:Shenzhen University, 2019. (in Chinese) [百度学术]
HANG T T X, TRUC T A, DUONG N T, et al. Preparation [百度学术]
and characterization of nanocontainers of corrosion inhibitor based on layered double hydroxides[J]. Applied Clay Science, 2012, 67/68:18‑25. [百度学术]
RYU H S, SINGH J K, LEE H S, et al. An electrochemical study to evaluate the effect of calcium nitrite inhibitor to mitigate the corrosion of reinforcement in sodium chloride contaminated Ca(OH)2 solution[J]. Advances in Materials Science and Engineering, 2017, 2017:6265184. [百度学术]
柳俊哲,耿俊迪,巴明芳, 等. 亚硝酸盐对含氯盐砂浆内钢筋钝化膜组成的影响[J]. 建筑材料学报, 2018, 21(4):536‑541. [百度学术]
LIU Junzhe, GENG Jundi, BA Mingfang, et al. Effect of nitrite on the composition of passivation film of steel bar in chlorine‑containing mortar[J]. Journal of Building Materials, 2018, 21(4):536‑541. (in Chinese) [百度学术]
CHOI H, INOUE M, CHOI H, et al. Physicochemical study on the strength development characteristics of cold weather concrete using a nitrite‑nitrate based accelerator[J]. Materials,2019, 12(17):2706. [百度学术]