摘要
采用硫铝酸盐水泥协同生活垃圾焚烧飞灰作为胶凝材料对渗滤液污泥进行固化,通过无侧限抗压强度试验、浸出毒性分析和微观测试,探索水泥与飞灰的复合固化效果和固化机理.结果表明:当水泥掺量不小于20%时,固化试样的28 d无侧限抗压强度满足填埋强度要求;飞灰是水泥固化渗滤液污泥的优良辅助固化剂,其对水泥固化试样无侧限抗压强度的增强效应存在最优掺量;10%的飞灰可替代10%的水泥而使固化试样达到更好的固化效果;复掺30%或40%水泥+15%飞灰的试样可同时满足填埋强度和浸出毒性的要求.
随着城市化,尤其是大型和特大型城市的发展,人口密度持续增加,生活垃圾清运量呈现指数式增长的态势.2021年中国的生活垃圾清运量已达到2.5亿t,其中30%采用卫生填埋处
固化/稳定化技术是渗滤液污泥预处理的有效方法,而普通硅酸盐水泥是最常用的固化
最近十年,垃圾焚烧发电厂的数量快速增加,相应的垃圾焚烧副产物产量激增,其中作为危废的飞灰,其产量已达到1 000万t/
本文采用硫铝酸盐水泥协同飞灰固化渗滤液污泥,分析水泥和飞灰掺量(质量分数,文中涉及的掺量、组成等均为质量分数)对渗滤液污泥固化试样无侧限抗压强度和浸出毒性的影响规律,探索复合固化剂的微观控制机制,以期为环境友好,高效环保的生活垃圾副产物(渗滤液污泥和飞灰)共处理技术的应用提供试验依据和科学支撑.
渗滤液污泥取自中国南方某生活垃圾卫生填埋场,其在天然状态下呈现黑褐色、果冻状,表面粗糙、结构疏松且有刺激性气味,其表面形态、微观结构及粒度分布如

图1 渗滤液污泥的表面形态、微观结构及粒度分布
Fig.1 Surface morphology, microstructure and gradation distribution of LS
渗滤液污泥的基本物理性质和矿物成分如
Water content(by mass)/% | Organic content(by mass)/% | Specific gravity | pH value | Density/(g·c | Plastic limit/% | Liquid limit/% | Liquidity index |
---|---|---|---|---|---|---|---|
761.1 | 71.2 | 1.59 | 7.1 | 1.01 | 144.5 | 414.2 | 2.29 |

图2 LS的矿物成分
Fig.2 Mineral composition of LS

图3 LS中水的存在形式
Fig.3 Water form in leachate sludge
飞灰取自中国广州某垃圾焚烧发电厂,呈灰黑色粉末状,烘干后颜色变淡至灰白色,外观形态为不规则的棉絮状,含水率低.
硫铝酸盐水泥和飞灰的化学组成如
Material | CaO | SiO2 | SO3 | Al2O3 | Fe2O3 | MgO | P2O5 | Na2O | K2O | Cl | Other |
---|---|---|---|---|---|---|---|---|---|---|---|
SAC | 47.07 | 10.07 | 11.54 | 24.37 | 2.70 | 1.13 | 0.09 | 0.49 | 0.99 | 0.25 | 1.30 |
MSWI fly ash | 28.01 | 6.92 | 8.96 | 2.07 | 1.48 | 1.88 | 0.85 | 13.19 | 6.58 | 26.80 | 3.26 |
飞灰的矿物成分和微观结构分别如图

图4 飞灰的矿物成分
Fig.4 Mineral composition of MSWI fly ash

图5 飞灰的微观结构
Fig.5 Microstructure of MSWI fly ash
设置水泥掺量(wC)为10%、20%、30%、40%、50%,飞灰掺量(wF)为0%、5%、10%、15%、20%,均以渗滤液污泥质量计.首先将称量好的水泥和飞灰掺入渗滤液污泥中,人工搅拌均匀,置于水泥胶砂搅拌机中搅拌5 min以形成均匀的混合浆体;然后将混合浆体分3层装入涂有凡士林的圆柱形PVC模具中(尺寸为39.1 mm×80.0 mm),每次置入混合浆体后即将模具置于振动台上振动2 min,以去除装样过程中形成的气泡;装样完毕后,将试样放于标准养护箱((20±2)℃,相对湿度大于95%)中养护24 h后脱模,脱模后的试样继续放置于养护箱中养护至拟定龄期.
按照GB/T 50123—2019《土工试验方法标准》对固化试样进行无侧限抗压强度试验.采用应变控制式无侧限压缩仪,加载速率为1.6 mm/min.每组平行试样为3个,结果取平均.
采用硫酸硝酸法进行浸出毒性试验.首先将浓硫酸与浓硝酸以质量比2∶1混合,加入去离子水中配置成pH值为3.20的浸提剂;接着取粉碎后的试样粉末以固液比0.1 kg/L与浸提剂倒入锥形瓶中混合,利用恒温水平震荡仪在23 ℃下以30 r/min震荡18 h;然后进行固液分离;最后采用电感耦合等离子体质谱仪进行重金属含量的测定.
将达到设计龄期的试样用无水乙醇淬冷后,放置在烘箱中于65 ℃下烘24 h,然后破碎,制成微观测试试样备用.采用场发射扫描电子显微镜(SEM)对试样进行微观形貌测试.采用X射线衍射仪(XRD)对试样进行矿物成分分析,扫描速率为5(°)/min,步长为0.02°.
不掺加飞灰时,水泥固化渗滤液污泥(C‑LS)试样的无侧限抗压强度(UCS)如

图6 水泥固化渗滤液污泥试样的无侧限抗压强度
Fig.6 UCS of SAC solidified leachate sludge samples
由
水泥协同飞灰固化渗滤液污泥(CF‑LS)试样的无侧限抗压强度如

图7 水泥协同飞灰固化渗滤液污泥试样的无侧限抗压强度
Fig.7 UCS of SAC and MSWI fly ash solidified leachate sludge samples
需要指出的是,当飞灰掺量为20%,水泥掺量为10%时,所得试样不成形,其UCS记为0 kPa.由
由
飞灰对水泥固化渗滤液污泥试样强度的提升作用主要体现在以下3个方面:①飞灰中的重金属元素对水泥水化反应有促进作用.飞灰中的重金属离子水解产生的氢离子对水泥熟料水化反应具有促进作
值得指出的是,过量的飞灰将对水泥的固化效果产生负面影响,其主要影响机制体现在以下2个方面:①过量的飞灰参与固化污泥骨架的构
由2.1可知,虽然单掺20%水泥的C‑LS试样的UCS可满足填埋强度要求,但是其强度处于较低水平,容易在受到外界扰动时快速降低.而复掺30%或40%水泥+15%飞灰的CF‑LS试样的固化效果较好,但CF‑LS试样中含有重金属含量较高的飞灰和渗滤液污泥(其Zn元素含量大于GB 16889—2008标
渗滤液污泥和飞灰中均含有重金属元素,其浸出毒性测试结果如
Type | Leaching content | Limit valu | |||
---|---|---|---|---|---|
LS | MSWI fly ash | C30F15‑LS | C40F15‑LS | ||
Hg | ND | 14.35 | 2.32 | 0.75 | 25 |
Cd | ND | 350.00 | 15.20 | 14.80 | 20 |
Cr | 440.00 | 2 000.00 | 331.84 | 229.61 | 1 000 |
Ni | 40.00 | 68.00 | 31.23 | 19.02 | 200 |
Pb | 6.00 | 2 300.00 | 507.66 | 424.34 | 1 000 |
Zn | 4 200.00 | 10 400.00 | 2 069.58 | 1 664.31 | 4 000 |
Note: ND indicates that the detection value is below the threshold.
由

图8 水泥协同飞灰胶凝材料的重金属固定机理示意图
Fig.8 Schematic diagram of heavy metal immobilization mechanism of SAC and MSWI fly as
为探索水泥协同垃圾焚烧飞灰对渗滤液污泥的固化机理,选择28 d龄期时40%水泥掺量下的典型C‑LS(记作C40‑LS)和CF‑LS试样(飞灰掺量为5%、10%、15%和20%的试样分别记作C40F5‑LS、C40F10‑LS、C40F15‑LS、C40F20‑LS)进行微观结构测试和矿物成分分析.
不同飞灰掺量渗滤液污泥固化试样的SEM图如

图9 不同飞灰掺量渗滤液污泥固化试样的SEM图
Fig.9 SEM images of leachate sludge samples solidified by SAC and MSWI fly ash of different contents
由
不同飞灰掺量渗滤液污泥固化试样的XRD图谱如

图10 不同飞灰掺量渗滤液污泥固化试样的XRD图谱
Fig.10 XRD patterns of leachate sludge samples solidified by SAC and MSWI fly ash of different contents
由
(1)硫铝酸盐水泥协同垃圾焚烧飞灰可有效地对渗滤液污泥进行固化.固化试样的无侧限抗压强度随水泥掺量增加而增加,当水泥掺量大于20%时,水泥固化试样在各试验龄期条件下的无侧限抗压强度满足填埋场的填埋强度要求(不小于50 kPa).
(2)垃圾焚烧飞灰可有效提高硫铝酸盐水泥对渗滤液污泥的固化效果,固化试样的无侧限抗压强度随飞灰掺量增加呈现先增大后减小趋势,最优飞灰掺量分别为5%(水泥掺量不大于30%)和15%(水泥掺量不小于40%).飞灰作为水泥的部分替代品可有效实现有害废物资源化和水泥消耗减量化的节能目标,达到飞灰与渗滤液污泥的危废/固废“共处理”目标.
(3)硫铝酸盐水泥协同垃圾焚烧飞灰胶凝材料可对飞灰中的重金属元素进行有效固定.复掺30%或40%水泥+15%飞灰试样的重金属浸出毒性远小于飞灰本身及规范限值,水泥掺量不小于30%的复掺飞灰固化试样可同时满足填埋强度和浸出毒性要求.
(4)硫铝酸盐水泥协同垃圾焚烧飞灰胶凝材料主要通过物理吸附、离子交换、化学沉淀和物理包封4种方式实现对重金属的固定.
参考文献
中国国家统计局. 中国统计年鉴—2022[M]. 北京:中国统计出版社, 2021. [百度学术]
National Bureau of Statistics of China. China statistical yearbook—2022[M]. Beijing: China Statistics Press, 2021. (in Chinese) [百度学术]
CHENG X Q, WEI C, KE X, et al. Nationwide review of heavy metals in municipal sludge wastewater treatment plants in China: Sources, composition, accumulation and risk assessment[J]. Journal of Hazardous Materials, 2022, 437:129267. [百度学术]
ABUNAMA T, MOODLEY T, ABUALQUMBOZ M, et al. Variability of leachate quality and polluting potentials in light of leachate pollution index(LPI) ‑ A global perspective[J]. Chemosphere, 2021, 282:18. [百度学术]
WISZNIOWSKI J, ROBERT D, SURMACZ‑GORSKA J, et al. Landfill leachate treatment methods:A review[J]. Environmental Chemistry Letters, 2006, 4(1):51‑61. [百度学术]
RENOU S, GIVAUDAN J G, POULAIN S, et al. Landfill leachate treatment:Review and opportunity[J]. Journal of Hazardous Materials, 2008, 150(3):468‑493. [百度学术]
WU C, TANG M, ZHANG H, et al. Effect of the physicochemical properties of municipal sludge from different areas in China and their influence on dewatering performance[J]. Chinese Journal of Environmental Engineering, 2021, 15(1):271‑278. [百度学术]
中华人民共和国住房和城乡建设部.生活垃圾卫生填埋处理技术规范:GB 50869—2013[S]. 北京:中国计划出版社, 2013. [百度学术]
Ministry of Housing and Urban‑Rural Development of the People’s Republic of China. Technical code for municipal solid waste sanitary landfill:GB 50869—2013[S]. Beijing:China Planning Press, 2013. (in Chinese) [百度学术]
中国环境保护部.生活垃圾填埋场渗滤液处理工程技术规范:HJ 564—2010[S]. 北京:中国环境出版社, 2010. [百度学术]
Ministry of Environmental Protection of China. Leachate treatment project technical specification of municipal solid waste landfill:HJ 564—2010[S]. Beijing:China Environmental Science Press, 2010. (in Chinese) [百度学术]
FENG G H, GUO Y B, TAN W. Effects of thermal hydrolysis temperature on physical characteristics of municipal sludge[J]. Water Science and Technology, 2015, 72(11):2018‑2026. [百度学术]
ALEXANDER M G, FOURIE C. Performance of sewer pipe concrete mixtures with portland and calcium aluminate cements subject to mineral and biogenic acid attack[J]. Materials and Structures, 2011, 44(1):313‑330. [百度学术]
TREMBLAY H, DUCHESNE J, LOCAT J, et al. Influence of the nature of organic compounds on fine soil stabilization with cement[J]. Canadian Geotechnical Journal, 2002, 39(3):535‑546. [百度学术]
王荣,董俊全,范衍琦,等. 超高含水率泥炭土的固化机理及强度特性[J].建筑材料学报,2022,25(10):1047‑1054. [百度学术]
WANG Rong, DONG Junquan, FAN Yanqi, et al. Solidification mechanism and strength characteristics of peat with ultra‑high water content[J]. Journal of Building Materials,2022,25(10):1047‑1054. (in Chinese) [百度学术]
宋树祥,郑超,杨昆,等.掺砂水泥固化华南滨海软土的强度和干湿循环特性试验研究[J].工业建筑,2023,53(12):190‑197. [百度学术]
SONG Shuxiang, ZHENG Chao, YANG Kun, et al. Experimental study on strength and dry‑wet cycle characteristics of coastally soft soil in south China cemented by sand and cement[J]. Industrial Construction, 2023,53(12):190‑197. (in Chinese) [百度学术]
徐超,郭宏峰,杨晓明,等.普硅水泥和矿渣水泥加固滨海软土效果对比分析[J].岩土力学,2009,30(9):2737‑2740. [百度学术]
XU Chao, GUO Hongfeng, YANG Xiaoming, et al. Comparation analyses of the effects of marine soft soil improved by Portland cement and slag cement[J]. Rock and Soil Mechanics, 2009,30(9):2737‑2740. (in Chinese) [百度学术]
俞良晨,闫超,郭书兰,等.有机质含量对磷酸镁水泥固化土性质的影响研究[J].工程地质学报,2020,28(2):335‑343. [百度学术]
YU Liangchen, YAN Chao, GUO Shulan, et al. Study on the effect of organic content on properties of magnesium phosphate cement solidified soil[J]. Journal of Engineering Geology, 2020,28(2):335‑343. (in Chinese) [百度学术]
梁仕华, 冯德銮. 硫铝酸盐水泥协同垃圾焚烧副产物固化浓缩液污泥的强度和水稳定性试验研究[J]. 岩土力学, 2022, 43(6):1453‑1468. [百度学术]
LIANG Shihua, FENG Deluan. Experimental study on strength and water stability of concentrated solution sludge solidified with sulfoaluminate cement collaborating waste incineration by‑products[J]. Rock and Soil Mechanics, 2022, 43(6):1453‑1468. (in Chinese) [百度学术]
李青, 姚凯, 李俊潼, 等. 氢氧化钙对碱矿渣材料硫酸盐结晶破坏的抑制机理[J]. 建筑材料学报, 2023, 26(4):437‑442, 448. [百度学术]
LI Qing, YAO Kai, LI Juntong, et al. Inhibition mechanism of calcium hydroxide on sulfate crystallization damage of alkali‑activated slag materials[J]. Journal of Building Materials, 2023, 26(4):437‑442,448. (in Chinese) [百度学术]
ZHAO H, SUN W, WU X M, et al. The properties of the self‑compacting concrete with fly ash and ground granulated blast furnace slag mineral admixtures[J]. Journal of Cleaner Production, 2015, 95:66‑74. [百度学术]
TAN L, MENG Y, JU T, et al. Synthesis and application of geopolymers from municipal waste incineration fly ash(MSWI FA) as raw ingredient‑A review[J]. Resources, Conservation & Recycling, 2022, 182:106308. [百度学术]
FAN C C, WANG B M, QI Y, et al. Characteristics and leaching behavior of MSWI fly ash in novel solidification/stabilization binders[J]. Waste Management, 2021,131:277‑285. [百度学术]
CHEN W M, WANG F, LI Z, et al. A comprehensive evaluation of the treatment of lead in MSWI fly ash by the combined cement solidification and phosphate stabilization process[J]. Waste Management, 2020,114:107‑114. [百度学术]
CHEN Z L, LU S Y, TANG M L, et al. Mechanical activation of fly ash from MSWI for utilization in cementitious materials[J]. Waste Management, 2019, 88:182‑190. [百度学术]
QIAN G R, CAO Y L, CHUI P C, et al. Utilization of MSWI fly ash for stabilization/solidification of industrial waste sludge[J]. Journal of Hazardous Materials, 2006, 129(1‑3):274‑281. [百度学术]
王玉莹,支丽玲,马鑫欣,等.好氧颗粒污泥胞外聚合物组分特征分析[J].哈尔滨工业大学学报,2020,52(2):153‑160. [百度学术]
WANG Yuying, ZHI Liling, MA Xinxin, et al. Characterization of extracellular polymeric substances from aerobic granular sludge[J]. Journal of Harbin Institute of Technology,2020,52(2):153‑160. (in Chinese) [百度学术]
蒋心茹,姬高升,刘杨,等.市政污泥胞外聚合物(EPS)的形成过程与解聚方法研究进展[J].应用与环境生物学报,2020,26(5):1282‑1289. [百度学术]
JIANG Xinru, JI Gaosheng, LIU Yang, et al. Overview of extracellular polymeric substance(EPS) generation and disaggregation in municipal sewage sludge[J]. Chinese Journal of Applied and Environmental Biology, 2020,26(5):1282‑1289. (in Chinese) [百度学术]
中国环境科学研究院.生活垃圾填埋场污染控制标准:GB 16889—2008[S]. 北京:中国环境科学出版社, 2008. [百度学术]
Chinese Research Academy of Environmental Sciences. Standard for pollution control on the landfill site of municipal solid waste:GB 16889—2008[S]. Beijing:China Environmental Science Press, 2008. (in Chinese) [百度学术]
BALONIS M, LOTHENBACH B, LE SAOUT G, et al. Impact of chloride on the mineralogy of hydrated Portland cement systems[J]. Cement and Concrete Research, 2010,40(7):1009‑1022. [百度学术]
建筑材料科学研究院水泥研究所.硫铝酸盐水泥水化、硬化及其特性[J].硅酸盐学报,1978, 6(3):123‑140,225. [百度学术]
Cement Research Division, Research Institute of Building Materials. Hydration and hardening of sulfoaluminate cement and its properties[J]. Journal of the Chinese Ceramic Society, 1978, 6(3):123‑140,225. (in Chinese) [百度学术]
XING H F, YANG X M, XU C, et al. Strength characteristics and mechanisms of salt‑rich soil‑cement[J]. Engineering Geology, 2009,103(1/2):33‑38. [百度学术]
CHEN H E, WANG Q. The behaviour of organic matter in the process of soft soil stabilization using cement[J]. Bulletin of Engineering Geology and the Environment, 2006, 65(4):445‑448. [百度学术]
CHEN Q Y, HILLS C D, TYRER M, et al. Characterisation of products of tricalcium silicate hydration in the presence of heavy metals[J]. Journal of Hazardous Materials, 2007,147(3):817‑825. [百度学术]
CHEN Q Y, TYRER M, HILLS C D, et al. Immobilisation of heavy metal in cement‑based solidification/stabilisation:A review[J]. Waste Management, 2009, 29(1):390‑403. [百度学术]
TAN J W, DE VLIEGER J, DESOMER P, et al. Co‑disposal of construction and demolition waste(CDW) and municipal solid waste incineration fly ash(MSWI FA) through geopolymer technology[J]. Journal of Cleaner Production, 2022, 362:132502. [百度学术]
KIM J Y, AN J W, NAM B H, et al. Investigation on the side effects of municipal solid waste incineration ashes when used as mineral addition in cement‑based material[J]. Road Materials and Pavement Design, 2016,17(2):345‑364. [百度学术]
TANG J F, SU M H, WEI L Z, et al. Comprehensive evaluation of the effectiveness on metals recovery and decontamination from MSWI fly ash by an integrating hydrometallurgical process in Guangzhou[J]. Science of the Total Environment, 2020, 728, 138809. [百度学术]
HAVUKAINEN J, ZHAN M X, DONG J, et al. Environmental impact assessment of municipal solid waste management incorporating mechanical treatment of waste and incineration in Hangzhou, China[J]. Journal of Cleaner Production, 2017, 141:453‑461. [百度学术]
ZHANG Y Y, WANG L, CHEN L, et al. Treatment of municipal solid waste incineration fly ash:State‑of‑the‑art technologies and future perspectives[J]. Journal of Hazardous Materials, 2021, 411:125132. [百度学术]
QUINA M J, BORDADO J C, QUINTA‑FERREIRA R M. Treatment and use of air pollution control residues from MSW incineration:An overview[J]. Waste Management, 2008, 28(11), 2097‑2121. [百度学术]
JIANG G H, MIN X B, KE Y, et al. Solidification/stabilization of highly toxic arsenic‑alkali residue by MSWI fly ash‑based cementitious material containing Friedel’s salt:Efficiency and mechanism[J]. Journal of Hazardous Materials, 2022, 425:127992. [百度学术]
YU J C, QIAN J S, TANG J Y, et al. Effect of ettringite seed crystals on the properties of calcium sulphoaluminate cement[J]. Construction and Building Materials, 2019, 207:249‑257. [百度学术]