摘要
用偶联剂KH550与纳米SiO2协同改性玄武岩纤维(BF),研究了BF表面改性对玄武岩纤维混凝土(BFRC)力学性能的影响.结果表明:经KH550与纳米SiO2改性后,BF表面出现了C—H键,且Si—O—Si键对应的振动峰变强;当纳米SiO2用量为BF质量的3%时,BF形貌变化最为明显,此时改性BFRC的力学强度及抗裂性能均高于普通BFRC;在KH550的桥联作用下,纳米SiO2可有效增强纤维与混凝土基体的黏结强度,进而提高BFRC的力学强度和抗裂性能.
为了克服水泥基材料脆性较大的缺点,纤维增强水泥基材料在近年来受到越来越多的关
研究表明,添加适量BF可以显著提高水泥基材料的的吸能能
本文用偶联剂KH550将纳米SiO2接枝到BF表
水泥为阜新市大鹰水泥制造有限公司生产的P·O 42.5普通硅酸盐水泥,比表面积大于300
将BF置于250 ℃下烘干2 h,用去离子水清洗,放入烘箱中干燥,得到预处理BF,记为MBF.将无水乙醇与去离子水按9∶1(质量比,文中涉及的掺量、比值等均为质量分数或质量比)混合,再加入1.2%的KH550,将其置于65 ℃的恒温水浴锅中水解30 min.按3∶10的浴比加入MBF,在50 ℃下磁力搅拌1 h,烘干得到KH550改性BF(KH550/BF).
在KH550水解溶液中加入不同质量分数的纳米SiO2,并在50 ℃下搅拌1 h,得到KH550改性纳米SiO2(KH550/SiO2)溶液;将MBF放入KH550/SiO2溶液中加热至50 ℃并搅拌30 min,制得KH550和纳米SiO2改性BF(KH550/SiO2/BF).以BF质量计,设置纳米SiO2的质量分数w(SiO2)为0%(即KH550/BF)、1%、2%、3%、4%,将改性BF制备的BFRC(后文简称改性BFRC)分别记为K‑BP、K/S1‑BP、K/S2‑BP、K/S3‑BP、K/S4‑BP.基准组为未处理BF增强混凝土,记为普通BFRC(BP).BFRC中水泥、粉煤灰、砂、骨料、水、减水剂和纤维的用量分别为37.00、94.00、740.00、1 022.00、164.00、4.68、7.95 kg/
采用S‑4800型扫描电子显微镜(SEM)对改性前后BF以及纳米SiO2的表面形貌进行观察,工作电压为15 kV.采用Thermo Scientific Nicolet iS5型傅里叶红外光谱仪(FTIR)对改性前后BF及纳米SiO2的化学结构进行分析,制样采用压片法.
将混凝土试样在标准养护条件下养护至龄期t为3、7、28 d.抗压强度及劈裂抗拉强度试验的试样尺寸为100 mm×100 mm×100 mm,抗折强度试验的试样尺寸为100 mm×100 mm×400 mm.
分别把单根和4根改性BF平放于模具正中间,将砂浆分2次注入,养护24 h后拆模,在(20±1) ℃、相对湿度(90±1)%下进行标准养护.砂浆中水泥、粉煤灰、河砂、水和减水剂的用量分别为559.62、139.91、1 101.40、244.09、2.80 kg/
改性前后BF的SEM照片见

图1 改性前后BF的SEM照片
Fig.1 SEM images of BF before and after modification
纳米SiO2可与Ca(OH)2发生二次水化反应,提高水泥的力学强度和耐久

图2 KH550改性前后纳米SiO2的SEM照片
Fig.2 SEM images of nano‑SiO2 before and after modification by KH550
为探究纳米SiO2附着于BF的机理,利用红外光谱对改性前后BF化学结构变化的角度进行分析,结果见

图3 改性前后BF和纳米SiO2的红外光谱
Fig.3 FTIR spectra of BF and nano‑SiO2 before and after modification
混凝土的抗压强度见

图4 混凝土的抗压强度
Fig.4 Compressive strength of concretes
混凝土的抗折强度见

图5 混凝土的抗折强度
Fig.5 Flexural strength of concretes
混凝土的劈裂抗拉强度见

图6 混凝土的劈裂抗拉强度
Fig.6 Splitting tensile strength of concretes
相较于未改性BF,改性BF可对混凝土力学性能发挥更好的提升效果,且该效果是随着水化反应的进行而逐渐显露的.在改性过程中,当偶联剂用量固定,纳米SiO2掺量过多(w(SiO2)=4%)时,改性液中的纳米SiO2会发生团聚,BF表面纳米SiO2的沉积量反而减少,混凝土的性能出现衰减.由此可见,BF的改性效果和BFRC的整体性能取决于改性溶液中纳米SiO2分布的均匀性.
综上,纳米SiO2的最佳掺量为3%,此时BF的改性效果最佳,BFRC力学强度及抗裂性能提升最显著.
混凝土中纤维拔出荷载-位移曲线见

图7 混凝土中纤维拔出荷载-位移曲线
Fig.7 Load‑displacement curves of fiber pulling in concrete
混凝土的抗裂性能参数见

图8 混凝土的的抗裂性能参数
Fig.8 Crack resistance parameters of concretes
从微观角度分析,BF与基体的界面区中主要存在钙矾石(AFt)、水化硅酸钙(C‑S‑H)凝胶、Ca(OH)2(CH)晶体以及部分尚未水化的熟料颗粒、微孔洞及裂缝等.界面黏结度的高低主要取决于CH晶体的富集程度及取向,CH晶体数量越多,尺寸越大,界面黏结力越弱.与混凝土其他部位相比,BF与基体的界面存在更多的原生微孔洞及微裂缝,且BF与基体界面间CH晶体数量较砂浆处更多、平均尺寸更
(1)KH550可使纳米SiO2粒径更加均匀.纳米SiO2可增强BF与基体的界面性能,且促进BF与纳米SiO2通过化学键连结.随着纳米SiO2掺量的增加,BFRC的力学强度及抗裂性能均呈现先升高后降低的趋势.
(2)纳米SiO2可通过KH550的桥联作用不规则地沉积在BF表面,形成一层致密的纳米SiO2层.纳米SiO2可与BF附近积累的Ca(OH)2发生反应,生成均匀致密的水化产物C‑S‑H,可有效提高BF与水泥基体的整体性.
(3)BF的改性效果取决于溶液中纳米SiO2的均匀性,纳米SiO2最佳掺量为3%,此时BF的改性效果最佳,BFRC力学强度及抗裂性能的提升最显著.
参考文献
YU R, SPIESZ P, BROUWERS H J H. Effect of nano‑silica on the hydration and microstructure development of ultra‑high performance concrete (UHPC) with a low binder amount[J]. Construction and Building Materials, 2014, 65:140‑150. [百度学术]
SHAFIEIFAR M, FARZAD M, AZIZINAMINI A. Experimental and numerical study on mechanical properties of ultra high performance concrete (UHPC)[J]. Construction and Building Materials, 2017, 156:402‑411. [百度学术]
QIU J, LIM X N, YANG E H. Fatigue‑induced deterioration of the interface between micro‑polyvinyl alcohol (PVA) fiber and cement matrix[J]. Cement and Concrete Research, 2016, 90:127‑136. [百度学术]
王庆轩, 丁一宁. 玄武岩纤维耐碱性能及其网格布对混凝土的增强效应[J]. 建筑材料学报, 2021, 24(1):54‑62, 70. [百度学术]
WANG Qingxuan, DING Yining. Alkali resistance of basalt fiber and reinforcement effect of grid fabric on concrete [J]. Journal of Building Materials, 2021, 24(1):54‑62, 70. (in Chinese) [百度学术]
李趁趁, 马娇, 张普, 等.混杂纤维/束高强混凝土的抗冻性[J]. 建筑材料学报, 2023, 26(10):1072‑1081. [百度学术]
LI Chenchen, MA Jiao, ZHANG Pu, et al. Frost resistance of hybrid fiber/bundle high strength concrete [J]. Journal of Building Materials, 2023, 26(10):1072‑1081. (in Chinese) [百度学术]
同月苹, 王艳, 张少辉. 隧道衬砌纤维混凝土力学性能与耐久性能的研究进展[J]. 材料科学与工程学报, 2022, 40(3):528‑536. [百度学术]
TONG Yueping, WANG Yan, ZHANG Shaohui. Research progress on mechanical properties and durability of fiber reinforced concrete for tunnel lining [J]. Journal of Materials Science and Engineering, 2022,40(3):528‑536. (in Chinese) [百度学术]
苏丽, 牛荻涛, 黄大观, 等. 海洋环境中玄武岩/聚丙烯纤维增强混凝土氯离子扩散性能[J]. 建筑材料学报, 2022, 25(1):44‑53. [百度学术]
SU Li, NIU Ditao, HUANG Daguan, et al. Chloride diffusivity of basalt/polypropylene fiber reinforced concrete in marine environment [J]. Journal of Building Materials, 2022, 25(1):44‑53. (in Chinese) [百度学术]
任韦波, 许金余, 张宗刚, 等. 高温后玄武岩纤维增强混凝土的冲击变形特性[J]. 建筑材料学报, 2014, 17(5):768‑773. [百度学术]
REN Weibo, XU Jinyu, ZHANG Zonggang, et al. Impact deformation characteristics of basalt fiber reinforced concrete after high temperature [J]. Journal of Building Materials, 2014, 17(5):768‑773. (in Chinese) [百度学术]
YANG L Y, XIE H Z , FANG S Z, et al. Experimental study on mechanical properties and damage mechanism of basalt fiber reinforced concrete under uniaxial compression[J]. Structures, 2021, 31(9):330‑340. [百度学术]
DIAS D P, THAUMATURGO C. Fracture toughness of geopolymeric concretes reinforced with basalt fibers[J]. Cement and Concrete Composites, 2005, 27(1):49‑54. [百度学术]
XING D, XI X Y, MA P C. Factors governing the tensile strength of basalt fibre[J]. Composites Part A:Applied Science and Manufacturing, 2019, 119:127‑133. [百度学术]
LEE Y, KANG S T, KIM J K. Pullout behavior of inclined steel fiber in an ultra‑high strength cementitious matrix[J]. Construction and Building Materials, 2010, 24(10):2030‑2041. [百度学术]
文爱诗, 何素萍, 潘浩津, 等. 低温等离子体预处理对混杂纤维复合材料性能的影响[J]. 福建农林大学学报(自然科学版), 2023, 52(3):423‑428. [百度学术]
WEN Aishi, HE Suping, PAN Haojin, et al. Effect of low temperature plasma pretreatment on properties of hybrid fiber composites [J]. Journal of Fujian Agriculture and Forestry University(Natural Science), 2023, 52(3):423‑428. (in Chinese) [百度学术]
AFROZ M, PATNAIKUNI I, VENKATESAN S. Chemical durability and performance of modified basalt fiber in concrete medium[J]. Construction and Building Materials, 2017, 154:191‑203. [百度学术]
LEE S O, RHEE K Y, PARK S J. Influence of chemical surface treatment of basalt fibers on interlaminar shear strength and fracture toughness of epoxy‑based composites[J]. Journal of Industrial and Engineering Chemistry, 2015, 32:153‑156. [百度学术]
PARK O K, KIM W Y, KIM S M, et al. Effect of oxygen plasma treatment on the mechanical properties of carbon nanotube fibers[J]. Materials Letters, 2015, 156:17‑20. [百度学术]
ZHANG W, ZOU X S, WEI F Y, et al. Grafting SiO2 nanoparticles on polyvinyl alcohol fibers to enhance the interfacial bonding strength with cement[J]. Composites Part B:Engineering, 2019, 162:500‑507. [百度学术]
PI Z Y, XIAO H G, DU J J, et al. Interfacial microstructure and bond strength of nano‑SiO2‑coated steel fibers in cement matrix[J]. Cement and Concrete Composites, 2019, 103:1‑10. [百度学术]
LI H Y, LIEBSCHER M, MICUSIK M, et al. Role of pH value on electrophoretic deposition of nano‑silica onto carbon fibers for a tailored bond behavior with cementitious matrices[J]. Applied Surface Science, 2022, 600:154000. [百度学术]
王宗熙, 姚占全, 何梁, 等. 纳米SiO2对混凝土耐蚀性能和溶蚀寿命的影响[J].建筑材料学报, 2021, 24(4):766‑773. [百度学术]
WANG Zongxi, YAO Zhanquan, HE Liang, et al. Effect of nano‑SiO2 on corrosion resistance and dissolution life of concrete [J]. Journal of Building Materials, 2021, 24 (4):766‑773. (in Chinese) [百度学术]
LU M Y, XIAO H G, LIU M, et al. Carbon fiber surface nano‑modification and enhanced mechanical properties of fiber reinforced cementitious composites[J]. Construction and Building Materials, 2023, 370:130701. [百度学术]
MA Y, DI H H, YU Z X, et al. Fabrication of silica‑decorated graphene oxide nanohybrids and the properties of composite epoxy coatings research[J]. Applied Surface Science, 2016, 360:936‑945. [百度学术]
王健, 马强, 于剑桥, 等. 纳米SiO2改性聚合物水泥砂浆力学性能及干缩性能研究[J]. 混凝土, 2022(12):131‑135. [百度学术]
WANG Jian, MA Qiang, YU Jianqiao, et al. Study on mechanical properties and dry shrinkage properties of polymer cement mortar modified by nano‑SiO2[J]. Concrete, 2022(12):131‑135. (in Chinese) [百度学术]
XIE T Y, YANG G S, ZHAO X Y, et al. A unified model for predicting the compressive strength of recycled aggregate concrete containing supplementary cementitious materials[J]. Journal of Cleaner Production, 2020, 251:119752. [百度学术]