基于分形理论的古建筑青砖冻融损伤研究
作者:
作者单位:

1.内蒙古工业大学 土木工程学院, 内蒙古 呼和浩特 010051;2.内蒙古工业大学 内蒙古自治区建筑检测鉴定与安全评估工程技术研究中心, 内蒙古 呼和浩特 010051;3.内蒙古工业大学 内蒙古自治区土木工程结构与力学重点实验室, 内蒙古 呼和浩特 010051

作者简介:

吴安利(1971—),男,内蒙古呼和浩特人,内蒙古工业大学副教授,硕士生导师,硕士. E-mail: m13948113028@163.com

通讯作者:

吴安利(1971—),男,内蒙古呼和浩特人,内蒙古工业大学副教授,硕士生导师,硕士. E-mail: m13948113028@163.com

中图分类号:

TU522.1

基金项目:

国家自然科学基金资助项目(12272190);内蒙古自治区直属高校基本科研业务费项目(JY20220017,JY20230098);内蒙古自治区草原英才项目


Freeze-Thaw Damage of Ancient Architectural Blue Bricks Based on Fractal Theory
Author:
Affiliation:

1.School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, China;2.Inner Mongolia Autonomous Region Engineering Research Center of Structure Inspection, Appraisal and Safety Assessment, Inner Mongolia University of Technology, Hohhot 010051, China;3.Key Laboratory of Civil Engineering Structure and Mechanics of Inner Mongolia, Inner Mongolia University of Technology, Hohhot 010051, China

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    研究了冻融循环作用下青砖的表观形貌、质量损失率、相对动弹性模量、抗压强度及孔结构的变化规律,并结合分形理论建立了分形维数与抗压强度、孔隙率及抗冻性能的关系.结果表明:随着经历冻融循环次数的增加,青砖表面的小孔劣化为大孔,然后逐渐延伸形成裂缝,导致质量损失率不断增加,相对动弹性模量和抗压强度均呈下降趋势;经历冻融循环后青砖内部孔具有明显的分形特征,其分形维数在2.964 2~2.982 7之间;经历冻融循环后青砖的分形维数与抗压强度呈正相关,与孔隙率呈负相关,与抗冻性能具有高度的相关性;分形维数可用于评价青砖微观孔结构的变化,也可以反映经历冻融循环后孔结构对青砖宏观性能的影响;研究结果可以为寒冷地区古建筑青砖的保护及耐久性损伤研究提供理论依据.

    Abstract:

    The apparent morphology, mass loss rate, relative dynamic elastic modulus, compressive strength and pore structure of blue bricks after freeze-thaw cycle were studied. The relationship between fractal dimension and compressive strength, porosity and frost resistance was established based on fractal theory. The results show that with the increase of freeze-thaw cycles, the small pores on the surface of the blue brick deteriorate into large pores and gradually extend into cracks, resulting in an increase in the mass loss rate, and a decrease in the relative dynamic elastic modulus and compressive strength. After freeze-thaw cycle, the internal pores of the blue brick have obvious fractal characteristics, and the fractal dimension is distributed between 2.964 2 and 2.982 7. The fractal dimension of blue brick after freeze-thaw cycle is positively correlated to compressive strength and negatively correlated to porosity, and its fractal dimension is also highly correlated with frost resistance. The fractal dimension can be used to evaluate the microscopic pore structure change of the blue brick, and can also reflect the influence of the complexity of the pore structure on the macroscopic properties of the blue brick after freeze-thaw cycle. The research results provide a basis for the protection and durability damage of ancient architectural blue bricks in cold regions.

    图1 青砖的XRD图谱Fig.1 XRD patterns of blue bricks
    图2 青砖表观形貌的变化Fig.2 Changes of appearance of blue brick
    图3 经历不同冻融循环次数青砖相对动弹性模量的变化Fig.3 Changes of relative dynamic elastic modulus of blue brick with different freeze-thaw cycles
    图4 青砖试块受压试验的破坏形态Fig.4 Failure morphology of blue brick block under pressure test
    图5 青砖的抗压强度Fig.5 Compressive strength of blue brick
    图8 青砖的孔隙率Fig.8 Porosity of blue brick
    图9 青砖的孔径分布Fig.9 Pore distributions of blue bricks
    图10 青砖孔隙半径分布的占比Fig.10 Pore radius distribution ratios of blue bricks
    图11 青砖孔隙率与抗压强度的关系Fig.11 Relation between porosity and compressive strength of blue bricks
    图12 青砖孔结构与抗冻性能的关系Fig.12 Relationship between pore structure and frost resistance of blue brick
    图13 青砖分形维数与抗压强度的关系Fig.13 Relation between fractal dimension and compressive strength of blue brick
    图14 青砖分形维数与孔隙率的关系Fig.14 Relation between fractal dimension and porosity of blue brick
    图15 青砖分形维数与抗冻性能的关系Fig.15 Relationship between fractal dimension and frost resistance of blue bricks
    表 2 青砖与古青砖的质量损失对比Table 2 Comparison results of mass loss of blue brick and ancient blue brick[25]
    表 1 古青砖与仿古青砖的物理力学性能对比Table 1 Comparison of physical and mechanical properties of ancient blue brick and antique blue brick
    参考文献
    [1] 汤永净,邵振东.气候对中国古代塔砖材料性能劣化影响的研究[J].文物保护与考古科学, 2012, 24(3):33-39.TANG Yongjing, SHAO Zhendong.The effect of climate on the deterioration of ancient tower bricks[J]. Sciences of Conservation and Archaeology, 2012, 24(3):33-39. (in Chinese)
    [2] SATHIPARAN N,RUMESHKUMAR U. Effect of moisture condition on mechanical behavior of low strength brick masonry[J]. Journal of Building Engineering, 2018, 17:23-31.
    [3] 郭国梁,张道明,吕春,等. 冻融循环对卜奎清真寺古青砖力学性能影响的试验研究[J]. 科学技术与工程, 2021, 21(20):8638-8643.GUO Guoliang, ZHANG Daoming, Chun LÜ, et al. Experimental study on effects of freeze-thaw cycles on mechanical properties of ancient grey bricks in Pukui Muslim Temple[J]. Science Technology and Engineering, 2021, 21(20):8638-8643. (in Chinese)
    [4] 张雅文,赵黎明,张伟. 冻融循环作用下饱水青砖力学性能劣化规律研究[J]. 水利与建筑工程学报, 2022, 20(2):198-203.ZHANG Yawen, ZHAO Liming, ZHANG Wei. Degradation law of mechanical properties of water blue brick under a freeze-thaw cycle[J]. Journal of Water Resources and Architectural Engineering, 2022, 20(2):198-203. (in Chinese)
    [5] 王炎松,伍小敏,吴光龙,等. 基于仪器分析的古青砖表面品质影响因素[J]. 建筑材料学报, 2021, 24(4):851-857.WANG Yansong, WU Xiaomin, WU Guanglong, et al. Factors influencing the surface quality of ancient blue bricks based on instrument analysis[J]. Journal of Building Materials, 2021, 24(4):851-857. (in Chinese)
    [6] 李斌,杜红秀,刘晓仙,等. 山西明清古砖物理性能及成分分析[J]. 硅酸盐通报, 2020, 39(9):2944-2949, 2963.LI Bin, DU Hongxiu, LIU Xiaoxian, et al. Physical properties and composition analysis of ancient bricks of Ming and Qing dynasties in Shanxi province[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(9):2944-2949, 2963. (in Chinese)
    [7] 高悦舒,沈星宇,王菊琳. 古建筑青砖保护修复技术研究[J]. 砖瓦, 2023(3):43-47, 51.GAO Yueshu,SHEN Xingyu,WANG Julin. Protection and restoration technology of ancient blue bricks[J]. Brick-Tile, 2023(3):43-47, 51. (in Chinese)
    [8] 郝贠洪,何丹丹,吴日根,等. 内蒙古中部隆盛庄古建筑青砖墙体冻害损伤研究[J]. 硅酸盐通报, 2022, 41(7):2438-2446.HAO Yunhong, HE Dandan, WU Rigen, et al. Research on frost damage of ancient building blue brick wall of Longshengzhuang in Inner Mongolia[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(7):2438-2446. (in Chinese)
    [9] 刘笑. 兰州市砖砌建筑外立面劣化规律与机理研究[D]. 兰州:兰州大学, 2020.LIU Xiao. Research on the deterioration characteristics and mechanism of brick buildings facades in Lanzhou[D]. Lanzhou :Lanzhou University, 2020. (in Chinese)
    [10] 赵鹏. 荷载与环境作用下青砖及其砌体结构的损伤劣化规律与机理[D]. 南京:东南大学, 2016.ZHAO Peng. Deterior ation mechanism of grey brick and masonry structures under the action of load and environment[D]. Nanjing:Southeast University, 2016. (in Chinese)
    [11] 别治明. 冻融循环下青砖砌体结构性损伤的演化规律[J]. 山东农业大学学报(自然科学版), 2020, 51(4):668-672.BIE Zhiming. The evolution law of structural damage of blue brick masonry under a freeze-thaw cycle[J]. Journal of Shandong Agricultural University(Natural Science), 2020, 51(4):668-672. (in Chinese)
    [12] 刘科,刘霖,张永鹏. 干湿/冻融循环作用下改良隔离墙的渗透性及孔隙结构[J]. 建筑材料学报, 2022, 25(5):545-550.LIU Ke, LIU Lin, ZHANG Yongpeng. Permeability and pore structure of improved isolation wall under the action of dry-wet/freeze-thaw cycles[J]. Journal of Building Materials, 2022, 25(5):545-550. (in Chinese)
    [13] 董伟,王雪松,计亚静,等. 碳化-盐冻作用下风积沙混凝土损伤劣化机理及寿命预测[J]. 建筑材料学报, 2023, 26(6):623-630.DONG Wei, WANG Xuesong, JI Yajing, et al. Damage deterioration mechanism and life prediction of aeolian sand concrete under carbonization and salt freezing[J]. Journal of Building Materials, 2023, 26(6):623-630. (in Chinese)
    [14] FENG C, ROLES S, JANSSEN H. Towards a more representative assessment of frost damage to porous building materials[J]. Building and Environment, 2019, 164:106343.
    [15] ELERT K, CULTRONE G, NAVARRO C R, et al. Durability of bricks used in the conservation of historic buildings-influence of composition and microstructure[J]. International Journal of Sustainability in Higher Education, 2003, 4(2):91-99.
    [16] 李亚楠,谢华荣,夏畅畅,等. 青砖含水量和孔隙结构对冻融劣化的影响实验研究[J]. 建筑节能, 2022, 50(9):18-22.LI Yanan, XIE Huarong, XIA Changchang, et al. Experimental study on the influence of water content and pore structure of green bricks on freeze-thaw deterioration[J]. Building Energy Efficiency, 2022, 50(9):18-22. (in Chinese)
    [17] 张韦,刘超,刘化威,等. 基于孔体积分形维数的稻壳灰混凝土冻融损伤劣化机制[J]. 复合材料学报, 2023, 40(8):4733-4744.ZHANG Wei, LIU Chao, LIU Huawei, et al. Freeze-thaw damage deterioration mechanism of rice husk ash concrete based on pore volume fractal dimension[J]. Acta Materiae Compositae Sinica, 2023, 40(8):4733-4744. (in Chinese)
    [18] 薛慧君,申向东,邹春霞,等. 基于NMR的风积沙混凝土冻融孔隙演变研究[J]. 建筑材料学报, 2019, 22(2):199-205.XUE Huijun, SHEN Xiangdong, ZOU Chunxia, et al. Freeze-thaw pore evolution of aeolian sand concrete based on nuclear magnetic resonance[J]. Journal of Building Materials, 2019, 22(2):199-205. (in Chinese)
    [19] 孙浩然,邹春霞,薛慧君,等. 模袋混凝土干湿-冻融侵蚀孔结构的分形特征[J]. 建筑材料学报, 2022, 25(2):124-130.SUN Haoran, ZOU Chunxia, XUE Huijun, et al. Fractal characteristics of dry-wet and freeze-thaw erosion pore structure of mold-bag concrete[J]. Journal of Building Materials, 2022, 25(2):124-130. (in Chinese)
    [20] 吴倩云,马芹永. 冻融循环作用下BSFC的抗冻性及损伤模型[J]. 建筑材料学报, 2021, 24(6):1169-1178.WU Qianyun, MA Qinyong. Frost resistance and damage model of BSFC under freeze-thaw cycles[J]. Journal of Building Materials, 2021, 24(6):1169-1178. (in Chinese)
    [21] JIN S S, ZHANG J X, HUANG B S.Fractal analysis of effect of air void on freeze-thaw resistance of concrete[J]. Construction and Building Materials, 2013, 47:126-130.
    [22] JIN S S, ZHENG G P, YU J. A micro freeze-thaw damage model of concrete with fractal dimension[J].Construction and Building Materials, 2020, 257:119434.
    [23] DOU W C, LIU L F, JIA L B, et al. Pore structure, fractal characteristics and permeability prediction of tight sandstones:A case study from Yanchang Formation, Ordos Basin, China[J]. Marine and Petroleum Geology, 2021, 123:104737.
    [24] 赵燕茹,刘芳芳,王磊,等. 基于孔结构的单面冻后混凝土抗压强度模型研究[J]. 建筑材料学报, 2020, 23(6):1328-1336.ZHAO Yanru, LIU Fangfang, WANG Lei, et al. Modeling of compressive strength of concrete based on pore structure under single-side freeze-thaw condition[J]. Journal of Building Materials, 2020, 23(6):1328-1336. (in Chinese)
    [25] 张道明,王丽,郭国梁,等. 冻融作用对古青砖宏观性能及微观结构劣化的影响[J]. 文物保护与考古科学, 2021, 33(4):9-15.ZHANG Daoming, WANG Li, GUO Guoliang, et al. The effect of freeze-thaw action on the deterioration of macroscopic properties and microstructure of ancient green bricks[J]. Sciences of Conservation and Archaeology, 2021, 33(4):9-15. (in Chinese)
    [26] 吴中伟,廉慧珍. 高性能混凝土[M]. 北京:中国铁道出版社, 1999:47-50.WU Zhongwei, LIAN Huizhen. High performance concrete[M]. Beijing:China Railway Press, 1999:47-50. (in Chinese)
    [27] SHI Z J, GUO Q, XU Y Q, et al. Mass transfer characteristics, rheological behavior and fractal dimension of anammox granules:The roles of upflow velocity and temperature[J]. Bioresour Technol, 2017, 244:117-124.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴安利,刘坤,郝贠洪,吴日根,宣姣羽.基于分形理论的古建筑青砖冻融损伤研究[J].建筑材料学报,2024,27(8):701-710

复制
分享
文章指标
  • 点击次数:136
  • 下载次数: 5249
  • HTML阅读次数: 18
  • 引用次数: 0
历史
  • 收稿日期:2023-10-31
  • 最后修改日期:2024-02-05
  • 在线发布日期: 2024-09-03
文章二维码