• 11111
  • 首页
  • 期刊介绍
  • 编委会
  • 征稿启事
  • 期刊订阅
  • 相关下载
  • Email alert
  • 联系我们
引用本文:王鹏辉,乔宏霞,冯琼,薛翠真,张云升.基于PSO-BPNN模型的氯氧镁水泥混凝土耐水性预测[J].建筑材料学报,2024,27(3):189-196
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 170次   下载 457 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于PSO-BPNN模型的氯氧镁水泥混凝土耐水性预测
王鹏辉1,乔宏霞2,冯琼2,薛翠真2,张云升2,3
1.深圳大学 广东省滨海土木工程耐久性重点实验室,广东 深圳 518060;2.兰州理工大学 甘肃省土木工程防灾减灾重点实验室,甘肃 兰州 730050;3.东南大学 材料科学与工程学院,江苏 南京 211189
摘要:
为快速准确地获得具有优异耐水性氯氧镁水泥混凝土(MOCC)的配合比,设计了拓扑结构为4-10-2的粒子群优化(PSO)算法-反向传播(BP)神经网络(PSO-BPNN)模型.该模型的输入层参数为n(MgO)/n(MgCl2)、粉煤灰掺量、磷酸掺量和磷肥掺量,输出层参数为MOCC的抗压强度和软化系数;模型数据集为144组,其中训练集数据为100组,验证集数据为22组,测试集数据为22组.结果表明:PSO-BPNN模型在MOCC抗压强度预测中的评价参数——决定系数R2=0.99、平均绝对误差SMAE=0.52、平均绝对误差百分比SMAPE=1.11、均方根误差SRMSE=0.73;其在软化系数预测中的评价参数——R2=0.99、SMAE=0.44、SMAPE=1.29、SRMSE=0.62;与BP神经网络(BPNN)模型相比,PSO-BPNN模型具有更强的双参数预测能力,可用于MOCC配合比的正向设计和反向指导.
关键词:  氯氧镁水泥混凝土  耐水性  抗压强度  软化系数  PSO-BPNN
DOI:10.3969/j.issn.1007-9629.2024.03.001
分类号:TU528.01
基金项目:国家自然科学基金资助项目(52178216, 52108219, U21A20150, 52008196);甘肃省科技计划项目(23JRRA799)
Prediction of Water Resistance of Magnesium Oxychloride Cement Concrete Based on PSO-BPNN Model
WANG Penghui1, QIAO Hongxia2, FENG Qiong2, XUE Cuizhen2, ZHANG Yunsheng2,3
1.Guangdong Provincial Key Laboratory of Durability of Binhai Civil Engineering, Shenzhen University, Shenzhen 518060, China;2.Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China;3.School of Materials Science and Engineering,Southeast University, Nanjing 211189, China
Abstract:
In order to quickly and accurately obtain magnesium oxychloride cement concrete (MOCC) proportions with excellent water resistance, a particle swarm optimization back propagation neural network (PSO-BPNN) model with a topology of 4-10-2 was designed. The input layer parameters of the above model were n(MgO)/n(MgCl2), fly ash content, phosphoric acid content, and phosphate fertilizer content. The output layer parameters were MOCC compressive strength and softening coefficient. The model establishment data set contained 144 groups, including 100 groups of training set data, 22 groups of validation set data, and 22 groups of test set data. The results show that the mean value of each evaluation parameter in the prediction of compressive strength using the PSO-BPNN model are coefficient of determination R2=0.99, mean absolute error SMAE=0.52, mean absolute percentage error SMAPE=1.11, and root mean square error SRMSE=0.73. The mean value of each evaluation parameters in the prediction of softening coefficient are R2=0.99, SMAE=0.44, SMAPE =1.29, and SRMSE=0.62. This indicates that compared to the BP neural network (BPNN) model, the PSO-BPNN model has a strong ability to predict dual parameters and can be used for both forward design and reverse guidance of MOCC mix proportions.
Key words:  magnesium oxychloride cement concrete  water resistance  compressive strength  softening coefficient  PSO-BPNN