摘要: |
为确定钢纤维页岩陶粒混凝土(SFCC)现场实际的导热系数,与桥面板施工同步制作了不同钢纤维体积分数的SFCC试件,采用热板法进行测定,校核并扩展了导热系数预测公式,并且对高温沥青摊铺时SFCC桥面板的温度场进行了实测和数值模拟.结果表明:环境湿度为67%时,SFCC的实测导热系数为0.915~1.409 W/(m·K),增加钢纤维体积分数可提高SFCC导热系数;考虑湿度和钢纤维影响后的扩展Maxwell公式预测值与实测值吻合良好;高温沥青摊铺时桥面板SFCC混凝土内的温度梯度可达20.5 ℃,超过规范日温差,采用数值模拟可有效计算桥面板温度场. |
关键词: 钢纤维 页岩陶粒混凝土 组合桥面 导热系数 高温沥青摊铺温度场 |
DOI:10.3969/j.issn.1007-9629.2024.03.008 |
分类号:TU528.01 |
基金项目:“十四五”国家重点研发计划项目(2021YFB2601002);国家自然科学基金资助项目(51208056);中央高校基本科研业务费专项资金资助项目(300102212909);陕西省自然科学基础研究计划(2023-JC-YB-292) |
|
Experimental Study and Prediction of Thermal Conductivity and Temperature Field of Steel Fiber Reinforced Ceramsite Concrete |
NIU Yanwei1, KUANG Xiaoyan1, ZHENG Juntao2, DANG Wanghui1, TANG Yingying3
|
1.School of Highway, Chang’an University, Xi’an 710064, China;2.Shenzhen Engineering Company of CREGC, Shenzhen 518000, China;3.College of Future Transportation, Chang’an University, Xi’an 710064, China
|
Abstract: |
In order to determine the in situ actual thermal conductivity of steel fiber ceramsite concrete (SFCC), specimens were made synchronously with the construction of bridge deck and measured by the hot-plate method. The existing thermal conductivity prediction equation was verified and extended. Measurement and numerical simulation of temperature field of bridge deck during high temperature asphalt paving were carried out. The results show that when environment humidity is 67%, the measured thermal conductivity of SFCC is between 0.915-1.409 W/(m · K), and the increase of steel fiber will improve the thermal conductivity. Considering the environmental humidity and effect of steel fiber, the extend Maxwell equation prediction results agree well with test results. The temperature variation of SFCC under high temperature paving can attend 20.5 ℃, which is more unfavorable than daily temperature difference in the specification. The numerical simulation method can effectively calculate the temperature gradient of the bridge deck. |
Key words: steel fiber ceramsite concrete combined bridge deck thermal conductivity high temperature paving temperature field |