• 11111
  • 首页
  • 期刊介绍
  • 编委会
  • 征稿启事
  • 期刊订阅
  • 相关下载
  • Email alert
  • 联系我们
引用本文:郭磊,高航,田青青,郭利霞,李泽宣.基于XGBoost-LSTM的胶凝砂砾石抗压强度预测[J].建筑材料学报,2023,26(6):631-637
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 186次   下载 812 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于XGBoost-LSTM的胶凝砂砾石抗压强度预测
郭磊1,2,高航1,田青青1,3,郭利霞1,2,李泽宣1
1.华北水利水电大学 水利学院,河南 郑州 450046;2.华北水利水电大学 河南省水环境模拟与治理重点实验室,河南 郑州 450002;3.中国水利水电科学研究院 水资源所,北京 100038
摘要:
针对胶凝砂砾石(CSG)抗压强度试验周期长、耗材大等问题,运用极度梯度提升树-长短期记忆网络(XGBoost-LSTM)组合模型对CSG抗压强度进行预测. 先选取相关性较强的“水泥含量”和“砂率”这2个输入变量代入XGBoost模型进行预测,并将结果与原特征一起代入LSTM模型;再采用94组抗压强度数据进行训练和验证. 结果表明:与基础模型XGBoost和LSTM相比,XGBoost-LSTM组合模型的决定系数分别提高5.6%和3.5%. 说明通过XGBoost模型构造新特征具有可行性,且XGBoost-LSTM组合模型能够对CSG抗压强度进行精准预测.
关键词:  极度梯度提升树  长短期记忆网络  胶凝砂砾石  抗压强度
DOI:10.3969/j.issn.1007-9629.2023.06.008
分类号:TV41
基金项目:“十四五”国家重点研发计划项目(2021YFC3001000);国家自然科学基金资助项目(52109154)
Prediction of Compressive Strength of Cementitious Sand and Gravel by XGBoost-LSTM
GUO Lei1,2, GAO Hang1, TIAN Qingqing1,3, GUO Lixia1,2, LI Zexuan1
1.School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China;2.Henan Key Laboratory of Water Environment Simulation and Treatment, North China University of Water Resources and Electric Power,Zhengzhou 450002, China;3.Water Resources Institute, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
Abstract:
To solve the problems of too long compressive strength test cycle and too much material of cementitious sand and gravel (CSG) consumed, the model of extreme gradient boosting tree combined with long short-term memory network (XGBoost-LSTM) was used to predict the compressive strength of CSG. Firstly, the two input variables of “cement content” and “sand ratio” with strong correlation were selected into the XGBoost model for prediction, and the results were substituted into the LSTM model together with the original features. Another 94 sets of compressive strength data were used for training and validation. The results show that compared with the basic models XGBoost and LSTM, the coefficient of determination of the XGBoost-LSTM combined model is increased by 5.6% and 3.5% respectively. It has shown to be feasible to construct new features by the XGBoost model, and the XGBoost-LSTM combined model can accurately predict the compressive strength of CSG.
Key words:  extreme gradient boosting tree (XGBoost)  long short-term memory network(LSTM)  cementitious sand and gravel (CSG)  compressive strength