• 11111
  • 首页
  • 期刊介绍
  • 编委会
  • 征稿启事
  • 期刊订阅
  • 相关下载
  • Email alert
  • 联系我们
引用本文:郭磊,李泽宣,田青青,郭利霞,高航.基于XGBoost算法的胶凝砂砾石劈拉强度预测分析[J].建筑材料学报,2023,26(4):378-382
【打印本页】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 100次   下载 597 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于XGBoost算法的胶凝砂砾石劈拉强度预测分析
郭磊1,2,李泽宣1,田青青1,3,郭利霞1,2,高航1
1.华北水利水电大学 水利学院,河南 郑州 450046;2.河南省水环境模拟与治理重点实验室, 河南 郑州 450002;3.中国水利水电科学研究院,北京 100038
摘要:
将水泥质量浓度、砂率、水胶比和粉煤灰质量浓度设为输入变量, 28 d劈拉强度设为输出变量,用极端梯度提升树(XGBoost)算法对胶凝砂砾石(CSG)的劈拉强度进行预测,并与随机森林(RF)算法的预测结果进行对比,以决策系数(R2)、均方根误差(RMSE)、平均绝对误差(MAE)和平均百分比误差(MAPE)作为评估标准对2种算法进行对比分析.结果表明: XGBoost算法的R2为0.968 1,具有高度的预测准确性;相比表现良好的RF算法,XGBoost算法测试集的RMSE和MAE均降低了0.003, MAPE降低了0.32%,表明XGBoost算法能够对CSG劈拉强度进行更为精准的预测.
关键词:  极端梯度提升树算法  随机森林算法  强度预测  胶凝砂砾石  劈拉强度
DOI:10.3969/j.issn.1007-9629.2023.04.006
分类号:TV41
基金项目:“十四五”国家重点研发计划项目(2021YFC3001000);国家自然科学基金资助项目(52109154)
Predictive Analysis of Cemented Sand and Gravel Splitting Tensile Strength Based on XGBoost Algorithm
GUO Lei1,2, LI Zexuan1, TIAN Qingqing1,3, GUO Lixia1,2, GAO Hang1
1.School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046,China;2.Henan Key Laboratory of Water Environment Simulation and Treatment, Zhengzhou 450002,China;3.China Institute of Water Resources and Hydropower Research, Beijing 100038,China
Abstract:
The XGBoost algorithm was used to predict the splitting tensile strength of cemented sand and gravel (CSG) with mass concentration of cement, sand ratio, ratio of water to binder and mass concentration of fly ash as input variables and 28 d splitting tensile strength as output variables. Additionally, the result of XGBoost algorithm was compared with that of random forest (RF) algorithm, and the coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) were used as the evaluation criteria. The results show that the value of R2 by XGBoost algorithm is 0.968 1, which means XGBoost algorithm has a high degree of prediction accuracy. Compared with the well-performing RF algorithm, the values of RMSE and MAE of the testing set of XGBoost algorithm are both reduced by 0.003, and the value of MAPE is reduced by 0.32%. XGBoost algorithm is more accurate in predicting the splitting tensile strength of CSG than RF algorithm.
Key words:  extreme gradient boosting(XGBoost)algorithm  random forest (RF) algorithm  strength prediction  cemented sand and gravel (CSG)  splitting tensile strength