摘要: |
为研究建筑屋面保温关键材料在多场耦合作用下热工性能的演变,以寒冷气候区为背景,在温度、湿度和应力耦合作用下,对硬质聚氨酯泡沫塑料(RPUF)和真空绝热板(VIP)的热工性能进行试验.研究表明:在寒冷气候区,硬质聚氨酯泡沫塑料的导热系数随循环次数增加而逐渐变大,导热性能下降,有附加应力时,多场耦合作用会加快硬质聚氨酯泡沫塑料的老化;真空绝热板的导热系数随循环次数增加而缓慢增大,多场耦合作用会轻微加快真空绝热板的老化,但附加应力对真空绝热板的老化几乎没有影响.采用三维数字显微镜和扫描电子显微镜(SEM)观察了硬质聚氨酯泡沫塑料表面和横截面的微观结构,发现在多场耦合作用下聚氨酯泡孔结构发生了明显变化,在此基础上探讨了保温材料热工性能演变的机理. |
关键词: 多场耦合 寒冷气候区 导热系数 聚氨酯 真空绝热板 |
DOI:103969/j.issn.1007 9629202004022 |
分类号: |
基金项目:“十三五”国家重点研发计划项目(2016YFC0700807) |
|
Evolution of Thermal Performance of Roofing Insulation Materials under Multi field Coupling Conditions in Cold Climate Region |
WANG Zhongping, XIANG Rui, SUN Jie, SHE Anming
|
Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai 201804, China
|
Abstract: |
In order to study the evolution of thermal performance of key materials for building roof insulation under multi field coupling, based on the cold climate zone, the thermal performance evolution of rigid polyurethane foam(RPUF)and vacuum insulation panels(VIP) was tested under the coupling of temperature, humidity and stress.It is found that in cold climates, the thermal conductivity of rigid polyurethane foams increases with the number of cycle which lead the thermal conductivity decreases, and in the presence of additional stress, multi field coupling accelerates the aging of rigid polyurethane foams. The thermal conductivity of the vacuum insulation panel increases slowly with the number of cycles and the multi field coupling will slightly accelerate the aging of the vacuum insulation panel. However, the additional stress has little effect on the aging of the vacuum insulation panel. The surface and cross section microstructure of the thermal insulation material are observed by three dimensional digital microscope and scanning electron microscope. It is found that the polyurethane cell structure changed significantly under multi field coupling. Mechanism of thermal performance evolution is discussed. |
Key words: multi field coupling cold climate zone thermal conductivity polyurethane vacuum insulation panel(VIP) |